您现在的位置:首页>> 新闻中心>> 学习园地

井控常用词汇

时间:2013-10-14 阅读次数:

Chapter 1      The Frequently Used-vocabulary     In Well  Control

井控常用词汇

 

1.            abnormal pressure异常压力(normal pressure,  

正常压力 higher-than-expected/normal pressure,

lower-than-normal pressure

abnormally high pressure

abnormally low pressure

2.            accumulator储能器

3.            accumulator bottle储能器瓶

4.            acid fracture酸裂

5.            adjustable choke可调节流阀

6.            annular  blowout  preventer (BOP) 环型防喷器(ram BOP)  bag BOP

7.            annular pressure/casing pressure环空压力(套压)(drillpipe pressure立压) pit gain

8.            annular space环空(annulus)

9.            annular velocity环空上返速度

10.      anticline 背斜

11.      atmospheric pressure 大气压(0.1Mpa)(1at)

12.      background gas

背景气

13.      back off 倒扣/卸扣   make up

14.      back-pressure 回压  check/单向阀 

non-return valve回压凡尔

15.      barite BaSO4 重晶石

16.      barium sulfate BaSO4

17.      barrel (bbl) gallon/加仑

   1m3=6.2897bbl

18.      bell nipple 钟型导向短节,(喇叭口)

19.      BHP (bottom hole pressure)

20.      bleed 放喷

21.      bleed  line放喷管线

22.      blind ram 全封闸板

pipe ram 半封闸板

shear ram 剪切闸板

23.      blind ram preventer全封闸板防喷器

24.      blowout 井喷

(kick井涌)

25.      blowout preventer control panel防喷器控制面板 console

26.      blowout preventer control  unit防喷器控制系统

27.      blowout sticking 井喷   卡钻

28.      BOP stack防喷器组

29.      bottom hole pressure  test井底压力测试/DST----drill stem test中途测试

30.      bottoms up 上返行程/lag time

31.      bottoms-up time

上返时间

lag time 迟到时间

32.      Boyle’s law 波依耳定律

33.      bridging  materials

桥堵材料

34.      bullheading 压回地层压井法

35.      cased hole 下入套管的  井眼

open hole  section裸眼段

36.      casing套管 collar 钻铤

37.      casing burst pressure

套管破裂压力

38.      casing point 套管下深

39.      casing pressure套压

40.      casing seat 套管座

41.      casing string 套管柱

42.      cement  n.水泥

43.      cement plug水泥塞

44.      change ram 更换闸板

45.      charles’s law 查尔斯定律(V1/T1=V2/T2)

46.      check valve 单向阀

47.      choke 节流阀

48.      choke line节流管线

49.      choke manifold节流管汇/kill manifold

50.      circulate-and-weight method 循环加重法

51.      concurrent method /同步法

52.      circulating components

循环系统

53.      circulating density循环 密度 ECD

54.      circulating fluid=drilling fluid=mud/slurry

55.      circulating head 循环

56.      circulating pressure循环压力

57.      circulation循环

lost circulation 井漏

58.      clay hydration 粘土水化

59.      closed-in pressure

    shut-in pressure 关井压力

60.      concurrent method同步法

61.      condition  v. 处理,改善, 调整

62.      connate water 原生水

63.      connection gas 接单根气

64.      constant choke-pressure method 恒节流压力法

65.      constant pit-level method 恒泥浆池液面法

pit gain 泥浆池增量

66.      crystallization 结晶地层

67.      degasser 除气器

68.      diverter 分流器

69.      diverter line分流器管线

70.      drag 旋转阻力

71.      driller’s BOP control panel 司钻控制台

72.      driller’s method 司钻法  wait-and-weight method 等待加重法/工程师法

73.      drilling break 钻速突快/放空

74.      drilling fluid=drilling mud 钻井液

75.      drilling rate 机械钻速

       ROP—rate of penetration

   m/h  drilling time—   min/m

76.      drilling under pressure/under balance pressure drilling  UBD

欠平衡钻井

        drilling over pressure /过平衡

        near-balance pressure drilling/近平衡

77.      drill pipe float 钻杆浮阀

78.      drill pipe pressure 立压

79.      drill pipe pressure  gauge立压表

80.      drill pipe safety valve

钻杆安全阀

Kelly cock

81.      drill stem 钻柱 drill   string

82.      DST---drilling stem test /中途测试/unintentional kick/intentional kick

83.      drill under pressure v.

84.      ECD---equivalent circulating density 等效/当量循环密度

85.      entrained gas 气侵气

gas-cut mud/气侵泥浆

86.      explosive fracture 爆破压裂

87.      fault 断层

88.      fill line 灌浆管线  fill-up line

89.      fill the hole v. 灌浆

90.      fill-up rate灌浆速度

91.      filter cake 滤饼

92.      filter loss  滤失量

93.      filter press 失水仪

94.      final circulating pressure /FCP终了循环压力/ICP---initial circulating pressure

95.      flow check 溢流检测

96.      formation breakdown pressure 地层破裂压力/leak-off test

97.      formation competency test 地层承压能力测试

98.      formation fluid地层流体

99.      formation fracture gradient地层破裂压力梯度

100.         formation pressure地层压力

101.         formation strength地层强度

102.         fracture 裂缝

103.         fracture pressure破裂压力

104.         friction loss压耗

105.         gas气体

106.                 gas buster=mud-gas separator泥浆-   体分离器    Poor boy

107.         gas-cut mud气侵泥浆

108.         gas cutting气侵

109.         gas detection analyzer气体检测仪

110.         geopressured shales地压页岩

111.         geostatic pressure地静压力

112.         geothermal gradient地温梯度

113.         guide shoe引鞋

114.         gunk plug油泥塞

115.         hang off

116.         hard shut-in硬关井      

117.         soft shut-in软关井

118.         head 静压头

119.         hole geometry/hole size井眼尺寸

120.         hydraulic control pod液控箱

121.         hydril海德尔/

122.         hydrogen sulfide     H2S

123.         hydrostatic pressure静液压力

124.         IADC International Association of      Drilling Contractors  IWCF--forum

125.         ICP  初始循环压力

initial circulating pressure

FCP终了循环压力

final circulating pressure

123.   inside blowout preventer钻具内防喷器

inside BOP

internal BOP

126.         interstitial water 原生水=connate water

127.         invert-emulsion mud

逆乳化泥浆oil-base mud

128.         Kelly cock 旋塞

upper kelly cock上旋塞

lower kelly cock下旋塞

126  kick 井涌/overflow

127  kick fluids井涌流体

129.         kick tolerance井涌允许量

130.         kill  v.  压井well-kill   n.

131.                 killing fluid压井液     MWI----mud weight    increase  = 102Pd/H

132.         kill line 压井管线

133.         kill rate 压井泵速

134.         kill-rate pressure压井泵压

135.         kill sheet压井施工单

fill in 填写

133    kill string 压井管柱

leak-off test 漏失测试

136.         log 测井

137.         log a well  v.  测井

138.         logging device测井仪

139.                 loss of circulation   

140.                 lost circulation  

141.                 lost circulation    additives堵漏剂

140       lost circulation materials

LCM堵漏材料

141lost circulation plug堵漏塞

142lost returns 井漏

143lubricate 润滑v.

144.  macaroni string

145.  matrix acidizing基岩酸化

146maximum allowable surface pressure MASP/MAASP=Pf- Pm

最大允许关井套压 MACP

147measured depth   MD

测深层

TVD =true vertical depth垂深

ID 内径

OD外径

148Minerals Management Service

149.   mud additive泥浆添加剂

150mud analysis logging

          泥浆录井

151. mud column泥浆柱

152. mud conditioning处理泥浆

153. mud density recorder泥浆密度记录仪

154. mud-flow indicator泥浆流速指示器

       mud-flow sensor

155. mud-gas separator泥浆气体分离器

156. mud gradient 泥浆压力梯度

Gm=0.00981ρm

157. mud-level recorder泥浆液面记录仪

158. mud log 泥浆日志

159. mud logger 泥浆测量员

160. mud pit 泥浆池

161. mud program 泥浆配方

162. mud pump 泥浆泵

163. mud return line /ditch泥浆槽

164. mud system 泥浆体系

165. mud tank 泥浆罐

166. mud weight 泥浆比重

167. nipple up 安装防喷器nipple down拆防喷器

168. normal circulation 正常循环

169. normal formation pressure正常地层压力

      0.00981----- 0.010496  Mpa/m

170. OCS --- Outer Continental Shelf 外大陆架

171. OCS orders外大陆架法规

172. oil-base mud 油基泥浆

173. oil- emulsion mud油基乳化泥浆

174. open裸眼井,空井 open hole

175. overburden pressure上覆岩层压力

176. permeability 渗透性 impermeability

177. pipe ram preventer半封闸板防喷器

178. pit gain 泥浆池增量

179.pit-level indicator/recorder泥浆液面指示器

180. pit-volume recorder 泥浆体积记录仪

181.Pit Volume Totalizer(PVT)泥浆体积累计器

182. plug 塞子

183. plug back 回填v.

184. plugging material      填井材料cement

185. positive choke节流

negative differential pressure负压差

186. pounds per cubic foot

         /英尺3

187. pounds per gallon(ppg)

        /加仑  1g/cm3 = 8.33ppg  

fresh water /brine

188. pounds per square inch gauge(psig) /英寸2

压力表

189. pounds per square inch per foot    psi/ft

/英寸2/英尺-----压力梯度单位

190. pressure drop 压力降

191. pressure gauge 压力表

192. pressure gradient 压力梯度

193. pressure-integrity test 压力完整性测试

194. pressure loss压力损失

195. preventer packer防喷器胶芯

196. rate of penetration (ROP)机械钻速 m/hr

197. reduced circulating pressure(RCP)降低的循环压力  SCR—slow  circulating   rate

198. remote BOP control panel =drill’s BOP control panel

        防喷器遥控面板

199. remote choke panel

       节流阀遥控面板

200. returns 返出物

201. reverse circulation 反循环

202 reverse drilling break 钻速突慢

203rotating blowout preventer 旋转防喷器

204rotating head 旋转头

205safety valve 安全阀

206saturation point 饱和点

207set point =casing depth 套管下深

208setting depth 套管固深

209shale 页岩/泥页sand  

210shallow gas 浅气层

211shear ram 剪切闸板

212shut in   v.  关井

213shut-in   n. 关井

214. shut-in bottomhole pressure(SIBHP)

215. shut-in casing pressure(SICP)关井套压

SIDPP

216. shut-in drill pipe pressure(SIDPP) 关井立压  occur a kick 发生井涌 a kick has occurred

217. snub 不压井起下钻

218. snubber不压井起下钻装置

219. snubbing line不压井起下钻管线

220. snubbing unit = snubber

221. stack 防喷器组

222. strip a well   v.  强行起下钻

223. stripper head 封井头

224. stripper rubber 橡胶刮泥器

225. stripping强行起下钻作业

226. stripping in 强行下钻pull out of the hole

227. stripping out 强行起钻

228. strip pipe强行起钻

229. stump pressure test 抗冲击压力测试

230. subsea BOP 海底防喷器

231. subsea choke-line valve 海底节流管线阀

232. surface stack 地面防喷器组

233. surging  激动压力

234. swab  v.  抽汲   swabbing

          波动压力---- swab-surge

235. swabbed show抽汲显示

236. swabbing 抽汲效应

237. swabbing effect 抽汲效应

238. temperature gradient 温度梯度

239. total depth (TD)总深  MD = measured depth

240. transition zone 过渡带

241. trip gas 起下钻气

242. trip margin 起钻安全余量

243. trip tank 灌浆罐

244. true vertical pressure (TVD)垂深

245. tubingless completion 无油管完井workover/修井 service rig

246. underground blowout 地下井喷

247. upper kelly cock 上旋塞

248. wait-and-weight method 等待加重法(工程师法)

249. water-base mud 水基泥浆

250. water hammer 水击

251. wellbore =well=hole 井眼

252. wellbore pressure  井眼压力

253. well control 井控

254. well kick 井涌

255. wetability 润湿性

256. wild well 失控井/自喷井

257. out of control well失控井

 

 

Chapter 2    The Basic Concepts of Well Control

                      井控的基本概念

blowout

1. 井喷的危害/The harms of

1.1    井喷失控的危害性/ The harms of out of   control for blowout  

          Think of danger in time of peace

              居安思危

     1.2  国内几起典型的井喷事故/The typical   blow out incident in our country

2.   井喷失控的原因/The causes of out of  control      for blowout       

3.   对井控工作的正确认识/The correct view to well control

4.   做好井控工作的对策/The policy to implement well control operation

5.    井控及其相关的概念/well control and relevant concepts

5.1      井控/well control /kick control/pressure control-----井控是对油气井压力控制的简称/well control is control abbreviation to oil/gas well pressure.

控制地层压力→实现近平衡压力钻井→保护油气层→提高采收率→延长油井使用寿命。

5.2      井控的三个阶段/The three stage of well control

5.2.1  一级井控/primary well control

             一级井控是指利用合理的钻井液密度,正确的技术 及操作措施,满足近平衡压力钻井的要求,防止溢流发生,实现安全生产的井控工艺。

5.2.2  二级井控/secondary well control

二级井控是指及早发现溢流, 迅速实 现对井口的控制用压井工艺重建井内压力平衡的井控工艺。(重点)

5.2.3  三级井控/tertiary well control

              三级井控是指井喷失控后,重新恢复对井的控制。

5.3      井侵/influx

当地层压力大于井底压力时, 地层孔隙中的流体(油气水)将侵入井内, 通常称为井侵。(地面除气设备处理)

5.4     溢流/overflow

        地层压力大于井底压力时,地层流体在压力差的作用下向井内流动,这种流动成为溢流。

5.5  井涌/well kick
 
溢流进一步发展,钻井液涌出井口的现象称为井涌。

5.6   井喷/well blowout wide-open flow畅喷

ground blowout  / underground blowout

               地层流体(油气水)无控制的涌入井筒,喷出地面的现象称为井喷。井喷流体自地层经井筒喷出地面叫地上井喷,从井喷地层流入其他低压地层的现象叫地下井喷

5.7   井喷失控/out of control for blowout

         井喷发生后, 无法用常规方法控制井口而出现畅喷的现象称为井喷失控。这是钻井过程中最恶性的钻井事故。

       

Chapter 3       The Various Pressure Concept In Bore Hole井下各种压力的概念

 

压力是井控的最主要的基本概念之一,了解压力的概念及各种压力之间的关系对于掌握井控技术和防止井喷是十分常重要的。/pressure is one of the most important basic concepts. We should know the pressure concepts and the relation between various pressure. This is very important for us to master well control technology and prevent from blowout.

 

   1.压力概念/pressure concepts

   1.1   定义/Definition

         所谓压力是指物体单位面积上所受的垂直力。 

          /pressure is the vertical force per unit area exerted by object.

   1.2  公式/Formula

        

        P----pressure压力          1Pa=1N/ m2

        F----force       N

        A----area    面积  m2

   1.3   单位/unit

    1.3.1  Metric System------(Pa)

            1 Pa=1N/m2

                  1 Pa1 m2面积上受到1 N的力时形成的压力。

           1 N是指质量为1kg的物体获得1m/s2的加速度的力。

           1MPa=103kPa=106 Pa=10bar

=10.194at(kgf/cm2)10.2at

 

1at=1 kgf/cm2=98066.5 Pa

=98.0665 kPa=0.0980665 Mpa

粗略计算时,可认为:

1MPa=10kgf/cm2=10at  (误差为2%)

1at=100 kPa=0.1 Mpa

 

1.3.2  British  System-----psi

psi----pounds/inch2(pounds per square inch)

/英寸2

1psi=6.895 kPa7 kPa=0.007 Mpa

1000psi7 Mpa

5000 psi=35 Mpa

 

井控中很多压力是由液体和气体产生的,但压力的概念是一样的,所不同的是液体和气体在某点的压力在各个方向都相等。

 

2.静液压力/Hydrostatic Pressure

2.1  定义/Definition

静液压力由静止液体重力产生的压力。

         Hydrostatic Pressure is the force exerted by the weight of static fluid.

        “hydro”------water or liquid

        “static”-------at rest

2.2 公式 /Formula

      Ph= gρH= 0.00981ρH        Mpa 

     Ph= gρH= 0. 0981ρH      bar

2.3  钻井液的静液压力/ Hydrostatic Pressure of Drilling Fluid

       在钻井作业中, 钻井液的静液压力是由井中钻井液重力产生的。

        Pm= 0.00981ρH      Mpa    兆帕

      Where:   

ρm----钻井液的密度density of drilling fluid.    g/cm3(kg/l)

H------TVD垂深   m

For example:举例

ρm =1.2 g/cm3 ,     H=2000m,   kg/l

  计算Calculate:  Pm

 答案Answer: Pm=0.00981ρm H

=0.00981*1.2*2000

=23.544(Mpa)

      In drilling, hydrostatic pressure is the force exerted by drilling fluid in the wellbore. When formation pressure is greater than hydrostatic pressure, formation fluid may enter the wellbore. If formation fluid enter the well bore because formation pressure is higher than hydrostatic pressure, a kick has occurred. If prompt action is not taken to control the kick, or kill the well, a blowout may occur. To control a well, a proper balance between pressure in the formation and pressure in wellbore must be maintained; Hydrostatic pressure must be equal to or slightly higher than formation pressure.

 

3.          压力梯度/pressure gradient

3.1  定义/Definition

单位垂直深度压力的变化值

Pressure gradient is the amount pressure changes with per unit true vertical depth.

 

TVD&MD:   TD

 TVD and MD is differ, especially  in directionally drilled holes.

TVD is the length of a straight vertical line from the surface to the bottom of the hole. MD or total depth is the length of the well as measured along the actual course of the hole.

 

3.2 公式/formula

 

where:

G-----压力梯度gradient,     Mpa/m

P-----压力pressure,     Mpa

H----垂深TVD,            m

 

钻井液的压力梯度:

Gm= Pm/H=0.00981ρm    (Mpa/m)

例如For example:

ρm = 1.24g/cm3,  H = 3353m.

计算calculate:  Gm   and Pm

答案answer:   Gm= 0.00981ρm  

                                  =0.00981*1.24=0.0122(Mpa/m)

           Pm = Gm H=0.0122*3353=40.8(Mpa)

3.3  英制表示法/Expression Method of British System

      g=0.052ft/s2

     Pm  = 0.052ρm H

    Where:

    Pm ------静液柱压力hydrostatic pressure, psi---pounds per square inch.

   ρm -------密度density,  ppg----pounds per gallon./加仑

    H---------TVD,    ft—foot.

换算关系/conversion relation:

  1 g/cm3= 8.33ppg   淡水fresh water

  1ft = 12 inch = 0.3048m

  1m = 3.2808 ft

 

压力梯度公式Gradient formula:

 G = 0.052 ρ  (psi/ft)

例如For example:   ρ=8.33ppg

                           G = 0.052*8.33=0.433  (psi/ft)

                                        /英寸2/英尺

4.          地层压力/formation pressure

4.1定义/definition

作用于地层孔隙流体上的压力叫地层压力。

Formation pressure is the force exerted by fluids in a formation. It is measured at the depth of the formation with the well shut in. It is also called reservoir pressure or, since it is usually measured at the bottom of the hole with the well shut in, shut-in bottom hole pressure.

Pp =  Pd + Pm    SIDPP    SICP  

 

4.2  地层压力的分类/     Pp

The type of formation pressure

4.2.1  正常地层压力/normal formation pressure

          正常地层压力等于从地表到地下该地层处的静液压力。Normal formation pressure equal to the hydrostatic pressure from surface to the formation.

     Pp=Ph=0.00981ρH

Gp=Gh=0.00981ρ

ρ=1.0----1.07g/cm3

Gp=0.00981-----0.010496Mpa/m

Gp=0.0098-----0.010486Mpa/m   (国内)

4.2.2       异常高压/abnormally high pressure/

higher-than normal pressure

凡压力梯度高于淡水或盐水柱压力梯度的地层压力称为异常高压。

The formation pressure gradient which is higher than that of fresh water or brine column is called abnormally high pressure.

有时,地层流体与地层的连同通通道常常被封闭或隔层段,此时,隔层下部的流体必须支撑上部岩层,岩石重于地层水,所以,地层压力可能超过静液压力,形成异常高压。Trap   欠压实的页岩层

4.2.3      异常低压/abnormally low pressure

lower-than normal pressure

凡压力梯度低于淡水或盐水柱压力梯度的地层压力称为异常低压。

The formation pressure gradient which is lower than that of fresh water or brine column is called abnormally low pressure.

异常低压常常发生于衰竭产层和大空隙的老地层。(露头outcrop/降低)

钻井实践表明:这三种类型的地层都可能钻遇到,其中异常高压地层更为多见,它与钻井工程及施工关系也最大。

                                                 压力,Mpa

o

 

 

 

 

 

 

 


                              低压         正常           高压

m

4.3  地层压力的表示方法/

The expression method of formation pressure

4.3.1  压力单位/pressure unit,  20MPa

4.3.2  压力梯度/pressure gradient

           在对比不同深度地层中的压力时, 可消除深度的影响。

4.3.3  当量/等效密度/equivalent density

           平衡地层压力所需要的钻井液密.

           Equivalent density is the drilling fluid that can balance the formation pressure.

           某点压力等于具有相当密度的流体在该点所形成的液柱压力

        计算公式: 

           ρp = 102Pp/H = Pp/0.00981H

      ρp ---- 当量密度equivalent density g/cm3

     Pp ----地层压力formation pressure MPa 

     H ----垂直深度TVD   m

4.3.4   压力系数/pressure coefficient

non-dimension---无因次/无量纲

压力系数是指某点压力与该深度处淡水柱的静液压力之比。

与等效密度的关系:数值上相等

Pressure coefficient is a ratio that the pressure at a given depth is divided by the hydrostatic pressure of fresh water column at this depth.

Pp/0.00981*1*H = Pp/0.00981H

= 102Pp/H

在数值上等于当量密度。

例如:已知某井:H = 1000m

Pp = 11.76Mpa,

求:该深度处的地层压力系数。

        解: 压力系数 = 11.76/(0.00981*1*1000)

                                   =1.2

例如:已知某井:H = 2000m,地层压力系数为1.3,  :该深度处的地层压力。

      解:Pp = 0.00981*1.3*2000=25.48(Mpa)

 

5.          上覆岩层压力/overburden pressure     

5.1   定义/definition

        上覆岩层压力是指某深度以上的岩石和其中的流体对该深度所形成的压力。

        Overburden pressure is the pressure exerted at any given depth by the weight of the sediments, or rocks, and the weight of the fluids that fill pore space in the rock. Overburden pressure can vary in different areas because the amount of pore space and the density of rocks vary from place to place. Overburden pressure is generally considered to be 1 pound (lb) per square inch per foot (psi/ft)

 

5.2   公式/formula    

P0-----overburden pressure,  上覆盖岩层压力Mpa

φ-----porosity,    %  空隙度

 ρr-----density of rocks,  岩石密度g/cm3

ρ-------density of formation fluid,  地层水密度g/cm3

connate water

5.4      P0Pp 的关系/

The relationship between P0 and  Pp

     P0  = M + Pp

    G0  = GM + Gp

     M----基岩重力matrix gravity,    Mpa

G0  =0.022625Mpa/m=1psi/ft

                                                          压力, Mpa

 

 

 

 

      0

 

 

    

           Pp                       M                     P0

      

 

 

 

6.          破裂压力/fracture pressure----Pf

6.1定义/definition

  破裂压力指地层抵抗水力压破的能力.

  Formation fracture pressure is the amount of pressure that causes a formation to break down or fracture.

6.2  表示方法 

        压力

压力梯度 Gf

等效密度

6.3与深度的关系

7.         破裂压力试验Fracture

 primary well control

secondary well control

tertiary well control

think of danger in time of peace

居安思危

=10Bar()

7Mpa=1000psi

hydrostatic pressure

1foot=12inch

1foot =0.3048m

1m=3.2808ft 

equivalent

地层压力:

正常地层力:0.0098--0.010496Mpa/m

异常高压

异常低压

overburden pressure

fracture pressure      Pf

BHP---bottom hole pressure

swabbing

surging

differential pressure

pressure loss

laminar flow 层流

turbulent flow紊流

pump pressure

hydraulic pressure

 

 

 

 

地层破裂压力

一.定义    指地层抵抗水力压破的能力 leak-off  test

二.实验目的

1.确定最大允许钻井液密度ρmmax

2.确定最大允许关井套压(MAASP)Pamax

三、实验方法及步骤

(1)   井眼准备------当钻开套管鞋以下第一个砂岩层后,循环调整钻井液的性能,使其密度均匀稳定。一般钻3-----5米新井眼,最多不超过10 米。

(2)   上提钻具,关封井器。space out

(3)   用小排量,高压泵以0.8-----4/秒的排量缓慢向井内注入钻井液(最好用水泥车)。

(4)   准确记录不同时间的注入量井口压力。(若排量不变,可记录注入时间及井口压力)

(5)   一直注到井口压力不再升高,并略有下降时,停泵,记录数据后,从节流阀卸压。(若地层的承压能力很高,不一定非要压漏地层,满足钻井要求即可

    ..\KickMonitor\CAI\AVI\试验.avi

(6)   在直角坐标系内作出以井口压力与泵入量(泵入时间)为坐标的实验曲线。

(7)   从图中确定以下各点:

PL-------漏失压力。既开始偏离直线点的压力值。

PR--------破裂压力。最高点的压力值。

(8)   计算有关的数据:

地层的破裂压力:

P= PL+ 0.00981ρm Hf

Hf----套鞋的垂直深度

破裂压力梯度:

Gf= Pf/ Hf

破裂压力等效(当量)钻井液密度:

ρf =102 Pf/ Hf =ρm+102 PL/ Hf=102 Gf

(9) 确定最大允许钻井液密度ρmmax

表层套鞋以下: 1.221=1.23

ρmmax=ρf - 0.06 g/cm3

技术套鞋以下

ρmmax=ρf - 0.12 g/cm3

(10) 确定最大允许关井套压Pamax

Pamax= Pf – Pm= Pf –0.00981ρm Hf

Pamax----------最大允许关井套压

 Pf---------------   地层的破裂压力

ρm----------

 Pm-------------钻井液的静液压力

  Hf---------     套鞋的垂直深度

 

6. 58=6.59=6.5

1.2301=1.24

 

 

 

最大允许关井套压

MAASP------maximum allowable annular surface pressure

 

8.       井底压力/BHP  bottom hole pressure

7.1 定义BHA bottom hole assembly

井底压力是指地面及井内各种压力作用于井底的总压力.

BHP is the force exerted by surface pressure and various pressure in the hole.

7.1不同钻井作业中的井底压力

2.1.1.       钻井液静止时:

Pb=Pm

Pb-----井底压力

Pm-----钻井液静液柱压力

7.1.2  起钻时:swab   trip margin

          Pb=Pm – Psb - Pdp

                Psb-----抽汲压力

           Pdp------未灌液时静液压力的减小值

7.1.3  下钻时:

         Pb=Pm + Psw

                  Psw------ 激动压力

7.1.4   正常钻进时

        Pb=Pm+ Pbp+ Pmr

          Pm-----钻井液静液柱压力

Pbp-----  环空流动阻力

 Pmr------岩屑引起的静液压力增值

7.1.5       划眼时ream

        Pb=Pm+ Pbp+ Psw

8. 井底压差 /differential pressure

8.1 定义    positive/negative

     井底压力与地层压力的差值.

    P = Pb - Pp

  8.2  井底压差与机械钻速的关系ROP

Vm

压差越大,机械钻速越小

 
 

 

 

 


                                       P

8.3  P影响Vm原因

(1). P对井底岩屑产生压持效应.

(2).压差使井底岩石强度增加

9.1 压力损失/pressure loss

环空流动阻力

   影响因素:

钻井液的上返速度

环空间隙

井深

钻井液的性能

10. 波动压力   swab-surge

抽汲压力----起钻时,钻柱向上运动, 相当于钻井液向下流动, 产生向的摩擦阻力,使井底压力减小,由此而减小的压力叫抽汲压力。

激动压力-----下钻时,钻柱向下运动, 相当于钻井液向上流动, 产生向的摩擦阻力,使井底压力增加,由此而增加的压力叫激动压力。

 

影响因素:

 

减小波动压力的措施:

1.          控制起下钻速度

2.          防止猛提猛刹

3.          调整好钻井液性能

4.          保持井眼畅通

 

11. 泵压和液压

 

12. 钻井液密度的确定:

1.           钻井液密度的确定1.3402=1.35

附加当量法trip margin

ρm =ρp+ρe = 102Pp/H +ρe

油水层:ρe= 0.05----0.10 g/cm3

Pe = 1.5-----3.5Mpa

气层: ρe= 0.07----0.15 g/cm3

Pe = 3.0-----5.0Mpa

13. 溢流发生的原因

      根本原因: 井底压力(Pb)小于地层压力(Pp

1.          对地层压力掌握不准确, 使设计的钻井液密度偏低.

2.          井内钻井液柱高度下降.

       1)井漏    2)没灌满井眼

3.          钻井液密度下降.

          1)气侵  2)卡钻时混油

4.          起钻抽汲

5.          环空流动阻力消失.

二级井控

一.       溢流预兆overflow sign

1.       钻进过程

(1)       泥浆池液面升高

(2)       出口钻井液流速增加

(3)       停泵钻井液外溢

(4)       钻速突快或放空

(5)       循环泵压下降, 泵速增加

(6)       钻具悬重发生变化

(7)       钻井液性能发生变化

     8)岩屑的大小和形状发生变化

当机械钻速突然增加5---6倍时的钻速,/小时,叫钻速突快.快钻时:钻时突然减小5---6倍时的钻时,叫快钻时。分钟/

 

2. 起下钻时预兆

起钻时:  灌浆量   小于    起出钻具排替量

起出3柱钻杆或1柱钻铤displacement

下钻时:   返液量  大于   下入钻具排替量

3.   起完钻时预兆:   trip tank

   井口是否有外溢

二.       节流压井管汇

 

1.    节流压井管汇流程(如图所示)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2. 节流阀作用:   给井底施加回压

2.       节流阀特点: 只能节流, 不能断流

..\KickMonitor\avi\Choke.avi

..\KickMonitor\avi\ChokeOpen.avi

   4. 注意两点 : 防沙,防冻 

5.           节流压井管汇的正确操作:

⑴关井操作(软关井)

迅速打开液动/手动4#平板阀 HCR/ → 关封井器 → 关节流阀,试关井(PaPamax=→关节流阀上游的平板阀。

关井状态转变为压井状态:

  缓慢开泵,同时迅速打开节流阀及节流阀上游的平板阀,调节 节流阀,保持关井套压不变,一直到 泵的排量达到压井排量/泵速

 

 为什么要迅速关井?

1. 可迅速控制住井口,使井控工作处于主动,有利于实现安全压井.

2.        可制止地层流体继续进入井内.

3.        减小关井套压(Pa)和关井立压(Pd)

4.  可准确计算地层压力(Pp)及压井泥浆密度(ρm1)压降漏斗

Pp = Pd +  Pm

.   关井方法:

1.       软关井: 先打开4液动/手动平板阀HCR, 再关封井器的关井方法.  soft shut-in

特点: 关井慢, 但减小了水击效应, 有利于安全生产.

2       钻井过程中为了进行硬关井节流管汇的设置:

 

      1)防喷器一侧的液压阀关HCR

      2)节流管线 开至遥控节流阀

      3)遥控节流阀关

 

 

2.        硬关井: 直接关封井器的关井方法.

特点: 关井快, 但水击效应大, 不利于安全生产. hard shut-in

.      关井程序( shut-in procedure)

1.           钻进过程(软关井)

(1)       发信号 (一长, 两短,三短)

(2)       停转盘,停泵

(3)       上提钻具

(4)       开液动/手动平板阀HCR

(5)       关封井器(BOP---先关环形,再关半封

(6)       关节流阀,试关井,再关节流 上游的平板阀。   (打开环形)

(7)     录取关井立压Pd和关井套压Pa,泥浆池增量ΔV

2.           起下钻过程 trip

(1)       发信号

(2)       停止作业,抢装回压凡尔

non-return valve 

  back pressure valve

(3)       4液动/手动平板阀HCR—hydraulic control remote

(4)       关封井器BOP---先关环形,再关半封

(5)       关节流阀,试关井,再关节流上游的平板阀。(开 环形)

(6)       接方钻杆/或强行下钻

(7)       录取关井立压Pd和关井套压Pa,泥浆池增量ΔV

3.           起下钻铤 strip

(1)       发信号

(2)       停止作业,抢装带回压凡尔的钻杆       

(3)       4液动/或手动平板阀

(4)       关防喷器BOP

(5)       关节流阀,试关井,再关关节流上游的平板阀(开 环形)

(6)       接方钻杆/或强行下钻

(7)       录取关井立压Pd和关井套压Pa,泥浆池增量ΔV

4.           空井过程

喷势强烈:

(1)       发信号

(2)       开液动/或手动平板阀

(3)       关全封闸板.

(4)       关节流阀,试关井

(5)       关节流上游的平板阀。

(6)       录取关井套压和泥浆池增量

supervisor

六.关井时注意问题

1.           井内有钻具,不能关全封

2.           合理控制井口压力

3.           关井后,可正确活动钻具,可上下活动,严禁转动

4.           关封井器要果断,一次使BOP实现关闭。

5.           严禁用封井器卸压

6.           长期关井一定要手动锁紧。

7.           完成关井程序后,迅速准备压井,密切关注套压的变化。

.   关井立管压力的确定:  

        关井立管压力是计算Pp 和ρm1的重要依据, 因次准确录取Pd是十分常重要的。

1.关井状态下的压力平衡

      钻柱内:  Pp=Pd+ 0.00981ρmH

 
环空内 :     Pp=Pa+ 0.00981ρm(H-hw)

+ 0.00981ρw hw

   hw -----溢流高度     m 

  ρw -----溢流密度,  g/cm3

hw =ΔV/Va

ρw =ρm –102(Pa - Pd)/ hw

当ρw = 1.07----1.20 g/cm3  盐水溢流brine influ

ρw = 0.12----0.36 g/cm3  气体溢流

gas influx

ρw = 0.36---1.07 g/cm3 油或混合溢流

oil influx or mixing  influx

 

3.       影响准确录取Pd的因素

      ⑴ 关井后井内压力达到平衡需要一定的时间 ---压降漏斗消失    

 

permeability

    ⑵ 圈闭压力/trap pressure

           定义: 指从立压表及套压表上记录到的超过平衡地层压力的关井压力值。 10   8      3

           产生原因:

a.                      关井先于 停泵, 圈闭着一部分泵的能量。

b.                     气体在关井状态下滑脱上升(主要原因)

           检查方法

从节流阀放出40---80升钻井液,若立压和套压均有下降, 有圈闭压力。直到立压不再下降时记录到的立压才是真实的立压。若立压没有变化,套压有所增加,没有圈闭压力。 

5.           钻柱中装有回压凡尔时,求 Pd

不循环法

不知道压井泵速及该泵速下的循环压力Pci

a.                      缓慢启动泵,并向钻具内注入少量钻井液,观察立压和套压的变化。

b.                     当套压超过关井套压 0.51Mpa时,停泵,说明钻杆回压阀被顶开,记录此时的立压Pd1和套压Pa1

          ΔPa = Pa1 - Pa

P d = Pd1 - ΔPa

    循环法

 知道压井泵速及该泵速下的循环压力(Pci)。SCR

a.                      缓慢开泵,同时迅速打开节流阀及节流阀上 游的平板阀,调节 节流阀,使套压等于关井套压

b.                     当排量达到选定的压井排量时,保持不变,调节 节流阀,使套压恰好等于关井套压,记录此时的循环立管压力PT,停泵,关节流阀及上游的平板阀。

c.                       计算: 关井立压Pd

Pd = PT - Pci

 

Pci = PT - Pd

 

 

八. 压井工艺

BHP  constant  method 井底常压法

1.           压井原理:以“U”型管原理为依据,以不变的压井排量向井内打入重浆,始终保持井底压力BHP大于或等于地层压力,当重泥浆返出井口时,若压井成功,则

Pa=Pd=0  0   0

 

 

2.           压井时应达到的要求:

(1)      始终保持井底压力BHP 大于或等于地层压力,并保持井底压力BHP不变。

(2)      严格按井控要求和措施(程序)施工。

(3)      保证不压漏地层。

(4)       保护油气层。

3.           压井排量/泵速的选择原则及原因

 压井排量/泵速一般选正常钻进排量/泵速的1/2----1/3。原因:90

1)正常循环压力加上关井立压有可能超过泵的额定工作压力。

2)大排量高压泵所需要的功率有可能超过泵的输入功率.

(3). 大量流体流经节流阀有可能堵塞节流阀,从而压漏地层.

(4). 泥浆-气体分离器的处理泥浆的能力.  Poor boy    mud-gas seperator

(5). 震动筛的处理能力.

 

井控技术中“三早”的内容:早发现,早关井,早处理。

 

4.           压井基本数据的计算

1.判断溢流类型,选取安全附加值

溢流高度hw =ΔV /Va

ΔV----泥浆池增量pit gain  m3

Va----溢流所在井段环空的每米容积. m3/ m

则:溢流的密度  

ρw = ρm - 102(Pa-Pd)/ hw

当ρw = 1.07----1.20 g/cm3  盐水溢流brine influx

ρw = 0.12----0.36 g/cm3  气体溢流

gas influx

ρw = 0.36---1.07 g/cm3 油或混合溢流

oil influx or mixing  influx

(2) 计算压井液密度ρm1

calculate killing fluid density

ρm1 = ρm+102Pd/ H +ρe

ρm1--------压井液密度   1.3502=1.36    范围 +0.07-----0.15

Pd------- 关井立压       

H------垂深

ρe ------安全附加值  

油水层:0.05----0.10 g/cm3

气层:   0.07----0.15 g/cm3

 

(3)计算井眼系容积及加重钻井液量

   钻柱的内容积

    V1 = /4×(D12L1+ D22L2+…+ Dn2Ln)

    V1 = L1×Vp1+ L2×Vp2+…+ Ln×Vpn

     Vp---钻具内容积系数

D-----钻具的内径 I.D---internal diameter /m

L-----钻具的长度   m

   计算环空的容积.

V2 = /4*[( Dh12 – Dp12) L1+( Dh22 – Dp22) L2+…+

       

( Dhn2 – Dpn2) Ln]

V2 = L1×Vh1+ L2×Vh2+…+ Ln×Vhn

Vh-----环空的容积系数

Dh-----井眼直径或套管内径  m

Dp-----钻具的外径  m

O.D-----out diameter

                                         井眼系的总容积V

V = V1+V2                100----150/200

                                   加重钻井液量

V = 1.5----2.0 V

(4). 计算注入加重液的时间

注满钻柱内容积所需要的时间t1

t1= 1000 V1/60Q    min

Q-----压井排量  /L/S      /冲。冲/

冲数=V1/Q

Q----- 泵排量  /

t1=冲数/压井泵速    分钟

②注满环空容积所需要的时间t2

t2= 1000 V2/60Q    min

(5).计算压井循环时的总压力

计算初始循环立管总压力ICP----动压力

PTi = Pd + Pci     原浆      

 initial circulating pressure        

T-----total

I------initial    active /current

PTi------初始循环立管总压力  Mpa

Pd ----- 关井立压   Mpa

Pci----- 压井排量/泵速下的循环压力  Mpa

②计算终了循环立管总压力FCP

Final circulating pressure

PTf = ρm1/ρm× Pci                 14.31MPa= 14.4  经验公式

(6). 计算最大允许关井套压Pamax

Pamax= Pf – Pm = Pf – 0.00981ρm Hf

Pf = 0.00981ρm测试 Hf + PL

Pamax=(ρf -ρm)0.00981 Hf

 

Hf----套鞋深度   3.599 MPa = 3.5 MPa

Pamax-----最大允许关井套压

Pf------地层破裂压力

4.                            司钻法压井/Driller’s Method两步循环

           定义: 先用原浆循环排溢流, 再用重浆压井的压井工艺.

 

②压井步骤:

a.               计算压井基本数据

b.              填写压井施工单, 绘出立压控制进度表

c.                压井施工

第一步: 用原浆循环排溢流Cleaning well

a.       缓慢开泵, 同时迅速打开节流阀及节流阀上游的平板阀, 调节节流阀, 使套压保持关井套压不变, 直到排量达到压井排量.(5分钟之内完成)     /  0-----压井泵速

b.       保持压井排量不变, 调节节流阀, 使立压等于PTi, 直到溢流到井口.

 

c. 排完溢流, 停泵关井, Pa= Pd

 

a.       第二步: 用重泥浆压井      

b.       缓慢开泵, 同时迅速打开节流阀及节流阀上游的平板阀, 调节节流阀, 使套压保持新的关井套压不变, 直到排量达到压井排量.(5分钟之内完成)

c.        保持压井排量不变, 调节节流阀, 使套压保持新的关井套压(已等于关井立压)不变, 直到重浆到达钻头. ----t1

c. 重泥浆返入环空, 调节节流阀, 使立压等于PTf, 直到重浆返出井口.-----t2

c.        停泵关井, 若压井成功, Pa=Pd=0.

d.       开井循环, 调整钻井液性能,恢复生产.

 

 ③司钻法压井中立压及套压的变化

 

   P       1循环                       2循环周 

 

 

PTi

PTf

 

 

 

 

Pa

 Pd

 

 

 

 

                  

 

 T1          T2                T3                        T4        T                                                   

司钻法压井中立压及套压的变化

 

    立压变化

     气体溢流套压变化

液体溢流套压变化

0 T1 溢流顶部到井口

T1T2:排完溢流

T2T3:重泥浆到钻头

T3T4:重泥浆返出井口

 

..\kickmonitor\avi\ wellkilldriller.avi

 

 

7.工程师法压井wait-and-weight method

定义:直接用重泥浆压井的井控工艺

 

施工步骤:driller

a.       缓慢开泵, 同时迅速打开节流阀及节流阀上游的平板阀, 调节节流阀, 使套压保持关井套压不变, 直到排量达到压井排量.(5分钟之内完成)

b.       保持压井排量不变, 调节节流阀, 按照立压控制进度表来调节立压,直到重泥浆到达钻头。------t1

c. 重泥浆返入环空, 调节节流阀, 使立压等于PTf, 直到重浆返出井口.    --------t2

d. 停泵关井, 若压井成功, Pa=Pd=0.

e. 开井循环, 调整钻井液性能,恢复生产.

 


 

 P

 PTi

 

 

 


PTf

 

 

 

 

 

Pa

 

 

 

 

 

 

 

 

0

                   T1            T2              T3                               T4       T

  工程师法压井中立压及套压的变化

    立压变化

     气体溢流套压变化

液体溢流套压变化

0 T1:重泥浆到钻头             

T1T2:溢流顶部到井口               

T2T3:排完溢流

T3T4:重泥浆返出井口

 

..\kickmonitor\avi\wellkillnew.avi

 

天然气溢流的特点

 

一.天然气的特点

1.  可压缩

2.  密度小,扩散性大

3.  易燃,易爆有毒(H2S,  CO

二.天然气的在不同类型钻井液中的溶解性:

        天然气更易溶解于油基钻井液

二.天然气侵入井内的方式:

1岩屑气侵

2.重力置换气侵

3.扩散气侵

4.  气体溢流

三.      气体定律

                  P1V1= P2V2

 

 

四.     气体侵入井内对井内液柱压力的影响

1.  气体在井内的存在形式:气泡  气柱

2. 运动方式:循环上升,滑脱上升

3. 天然气对钻井液密度的影响

 


 钻井液密度随井深自下而上减小

钻井液密度随井深自上而下增加

 

 

4.  气侵钻井液密度的计算

   

-----井深h处气侵钻井液密度

------地面气侵钻井液与气侵前钻井液密度之比

--------未气侵钻井液密度

------地面压力   0.1MPa

5.  注意问题:

密度计算

对井内压力的影响

首要措施:地面除气 degasser

五.      开井状态下气柱对井内压力的影响

气柱膨胀上升,井底压力逐渐减小

 

 

 

 

 

 

 

 

 


六.       关井状态下气柱对井内压力的影响

           气柱不膨胀上升,气柱压力不变,近似等于地层压力,井底及井口压力逐渐增大

 

 


                                                 L2

                          

 


                                                 L1 

                              P

 

压力反转 pressure inversion

 
Pa = P -   0.00981 L2

Pb= P +   0.00981 L1

七.      结论:

1.  关井时井口要承受很高的压力,要求井口防喷器要有足够高的承压能力。

2.  发生气体溢流不应长时间关井,避免超过最大关井套压。

3.  气体滑脱上升引起井口压力不断升高,不能认为地层压力很高,不能录取这时的井口压力。

八.      关井后天然气上升的处理(不循环处理)

1.  立管压力法

  原理:通过节流阀间断放出一定数量的钻井液,使天燃气膨胀,气体压力降低,通过立管压力控制天然气的膨胀和井底压力,使井底压力略大于地层压力,既防止天然气再进入井内,又不压漏地层。

操作方法

①.先确定一个比初始关井立管压力高的允许立管压力Pd1 和放压过程中立管压力的变化值△Pd    5—6  ---7

②.当关井立管压力由Pd 增加到

Pd1+Pd )时,通过节流阀放钻井液,立管压力下降到Pd1时,关井

③.关井后,天然气继续上升,立管压力再次升高到Pd1+Pd ),再按上述方法放压,重复进行,可使天然气上升到井口。

注意:放压过程中,环空放出钻井液,环空静液压力减小,因此套压增加一个值。套压增加等于环空静液压力的减小值。

 

不适应立管压力法的情况:top kill

1.  钻头水眼堵死

2.  钻头位置在气体之上

3.  钻具刺坏等

4.  空井  volumetric method

 

2.  体积法BHP constant

  原理:通过节流阀间断放出一定数量的钻井液,使天燃气膨胀,气体压力降低,通过套管压力控制天然气的膨胀和井底压力,使井底压力略大于地层压力,既防止天然气再进入井内,又不压漏地层。

 

九.体积法操作步骤:

1.  记录关井套压

2.  把节流管线放泥浆出口引到泥浆收集灌中,泥浆收集灌必须有刻度以便能准确计量放出的泥浆量。

3.  计算每次的放浆量,其对井底形成的静液压力值一般0.7Mpa(=100psi) (IADC推荐数值)左右。我们可设为0.5Mpa1Mpa

1=0.00981*ρm*v/va

100=0.052*ρm*v/va

4.  测关井套压,允许其升高一固定的数值OK— over kill (例如:过平衡量为1Mpa),5---6---7.0—8—9---10---11

5.  当关井套压升高1Mpa,注意新的关井套压值。调节节流阀(最好用手动的)保持此新的套压值不变,放出所要求的少量泥浆,测量所放出的泥浆量,当其体积等于步骤3中计算的体积时,关井。

6.  重复步骤4和步骤5直到气体到达井口。

7.  用顶部压井法置换井内的气体。Top kill method

..\KickMonitor\AVI\v olumekill.avi

 

top kill顶部压井阀操作步骤:top kill method

1.   通过反循环管线注入一定量的钻井液,允

套压上升某一值,以最大允许值为准。

2.  当钻井液在重力作用下沉落后,通过节流阀慢慢释放气体,套压降到某一值后,关节流阀。

3.  重复上述操作,直到井内充满钻井液为止。

九.      天然气在泥浆中的溶解性:

1.  水基泥浆  

2.  油基泥浆  

防止地层水化的添加剂:      醇类

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


4.     隔水导管钻井液安全增量(Riser Margin

在考虑压井钻井液时,对于使用海底防喷器的井,可能遇到与地面不同的问题。隔水导管的损坏会使得在导管里的钻井液静液压力被海水的静液压力所替换。隔水导管钻井液安全增量是隔水导管损坏时维持一级井控所需要的钻井液密度增量,通常的计算程序如下:

 

 

Rotary Kelly bushing

 

 

 

 


                                            RKB

sea level               ha      Air gap

 

 

hw     Water  Depth
 
 


                                                               

      

 

                          Sea bed

                                                    

 

                                                                                              H

 

 

 

 

 

 

 

 

 

 

 

P = 0.00981(ha + hw)ρm – 0.00981 hwρw

 

 

 

 

[(ha + hw)ρm hwρw]

△ρm =102P/H’=

                                                          H - ha - hw

所需最小钻井液密度

ρm min = ===

 
             Hρm - hwρw

                          H - ha - hw

H------井深 m

hw ----------海水深,m

ha ---------气隙,m

ρm---------原浆密度,kg/l

ρw--------海水密度,kg/l

 

已知水深152米,井深1829米,压井钻井 液密度为1.41kg/l,

 隔水管破裂时,所需最小钻井液密度 隔水管安全余量。

 

五.     海底井控:

      ..\KickMonitor\CAI\TUPIAN\水下喷器.bmp

关井程序:

1.  钻进过程:

(1).  停止转盘旋转钻,发出警报

(2)          上提方钻杆至预先计算好的高度

(3)           停泵

(4)          打开水下阻流阀和可调节流阀(失效保护阀)

(5)          关环形防喷器

(6)          关遥控可调节流阀

(7)          确认来自井内的所有流动都停止,

(8)          记录关井立压和关井套压及泥浆池增量

(9)          如需要开始悬挂程序: hang  off

A. 上提或下放钻具以确保闸板不要关在钻具接头上  space out

B. 关闭闸板

C.             慢慢下放钻柱直到钻具接头坐到闸板上,并观察指重表的减少值.

D.             如果闸板不带自动缩紧装置,启动锁紧装置.

(10) 通知监督

2.  起下钻过程

(1)          停止起下钻作业, 发出警报

(2)          接一完全打开的钻杆安全阀

(3)          关闭钻杆安全阀,打开水下阻流阀和可调节流阀(失效保护阀)

(4)          关环形防喷器

(5)          关遥控可调节流阀

(6)          确认来自井内的所有流动都停止,

(7)          记录关井立压和关井套压及泥浆池增量

(8)          通知监督

 

3         钻井过程中为了进行硬关井节流管汇的设置:

 

      1)防喷器一侧的液压阀关

      2)节流管线 开至遥控节流阀

      3)遥控节流阀关

 

 

3,压井

井底常压法同样适用于水下压井, 所不同之处是:

由于压井时不通过隔水管, 节流管线的阻力大, 最大允许关井套压降低。压井之前须测出通过隔水管的低泵速泵压和通过的节流管线低泵速泵压。两者差值既为节流管线的阻力。压井结束后,还需放出关闭的防喷器下的圈闭的气体和替出隔水管内的轻钻井液。

 

下列那种方法可用于测量浮式钻机上的节流管线摩阻力?

         (三个答案)

         2032  节流管线摩阻力只有在关井时才能计算。

   2031    在节流阀完全打开的情况下,低速从压井管线循环至节流管线。泵压是节流管线摩阻力的两倍

         2030  低速从压井管线循环至节流管线。泵压近似是节流管线摩阻力的一半。

         2029 低速从节流管线循环至隔水管。泵压等于节流管线摩阻力。

         2028  在节流阀完全打开的情况下,使钻井液通过隔水管循环上返,然后通过节流管线循环上返,则两次测得的压力之差就是节流管线摩阻力。

 

不适应立管压力法的情况:

5.  钻头水眼堵死

6.  钻头位置在气体之上

7.  钻具刺坏等  volumetric method

 

 

九.体积法操作步骤:

1.  记录关井套压

2.  把节流管线放泥浆出口引到泥浆收集灌中,泥浆收集灌必须有刻度以便能准确计量放出的泥浆量。

3.  计算每次的放浆量,其对井底形成的静液压力值一般0.7Mpa(=100psi) (IADC推荐数值)左右。我们可设为0.5Mpa1Mpa

0.5=0.00981*ρm*v/va

4.  测关井套压,允许其升高一固定的数值(例如:0.5Mpa),5---5.5---6.0—6.5—7.0---7.5---8.0

5.       当关井套压升高0.5Mpa,再升高0.5Mpa时,注意新的关井套压值。调节节流阀(最好用手动的)保持此新的套压值不变,放出所要求的少量泥浆,测量所放出的泥浆量,当其体积等于步骤3中计算的体积时,关井。

6.       重复步骤4和步骤5直到气体到达井口。

7.       用顶部压井法置换井内的气体。Top kill method

..\KickMonitor\AVI\volumekill.avi

 

顶部压井阀操作步骤:

4.       通过反循环管线注入一定量的钻井液,允

套压上升某一值,以最大允许值为准。

5.       当钻井液在重力作用下沉落后,通过节流阀慢慢释放气体,套压降到某一值后,关节流阀,套压降低值应等于注入钻井液的静液压力值。

6.       重复上述操作,直到井内充满钻井液为止。

十.             天然气在泥浆中的溶解性:

1.       水基泥浆  

2.       油基泥浆  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


WELL-KILLING WORK SHEET

DRILLER’S METHOD

           

1. Record information

a.  Casing size_________Depth________ft

b.  Rated casing burst_______________psi

Maximum allowable surface(MASP)

d.        Pressure___g pressure

(1)  ____________psi      Rate________spm

(2)  ____________psi      Rate_________spm     active /current

e.         Normal circulating pressure________psi

Pump rate ____________ stroke/min

Reduced circulatin e________spm

f.           Time of shut-in__________________am/pm

2.   Stop pump and close well completely. Allow pressure to stabilize

      Do not let casing pressure exceed MASP. If pressure builds to this value, circulate at highest allowed casing pressure and use low-choke pressure method to kill the well.

a.        Shut-in drill pump pressure(SIDPP)_____psi

b.      Shut-in casing  pressure(SICP)__________psi

c.       Mud weight _________________________ppg

d.      True vertical depth ____________________ft

e.       Pit gain______________________________bbl

f.         Circulating time, surface to bit_________min

 L/stroke-----displacement

Stroke /min

4.             Set circulating rate and pressure to      clean the well

a. Start pump and open choke, as require. Pressure on the choke initially should be the shut-in casing pressure, and this pressure should be maintained while the pump speed comes up to the desired strokes per minute.

b. Adjust choke to obtain SICP or to obtain SIDPP plus reduced circulating rate psi.

c.         Record circulating SIDPP___________psi

Rate ____________________________spm

d.        Maintain the pump rate constant at the selected reduced speed and maintain constant circulating SIDPP. If drill-pipe pressure increase, open choke; if it decrease, close the choke slightly. When the choke is adjusted, observe change on casing gauge to forecast magnitude of pressure on drill-pipe gauge.

e.         When well is free of gas, oil, or salt water, stop pump and close well. At this time, the annulus and drill-pipe pressure should be the same as original SIDPP.

f.           Record new SICP__________________psi

 

4.  Calculate mud density to kill the well.

          The mud density increase needed is calculated from the information recorded in step 2.

                MWI  =  SIDPP  ÷TVD ÷0.052 ppg

    5.    Increase surface mud system to required density.

          If mud weighting can be done in separate pit, it should be started at step 3.

   6.    Set circulating rate and pressures to kill well

a.  . Start pump and open choke as require. Pressure on the choke initially should be the shut-in casing pressure 3f, and this pressure should be maintained while the pump speed comes up to the desired strokes per minute.

b. Adjust choke to hold the new annulus pressure and hold constant until the drill-pipe is full of the required density mud.

c.  After drill pipe is full of the required density mud, record drill-pipe pressure and hold pump rate and drill-pipe pressure constant by varying choke size until the annulus is filled with new mud.

d. When required weight reaches surface, choke pressure, if any, is bled off. Stop

circulating and check for flow

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ICP                                                                                                         FCP

SIDPP

SBS—number of surface-to bit strokes

SBT---surface-to-bit time,   min

 

 

 

 

 

 

 

 

 

WELL-KILL WORKSHEET

WAIT-AND-WEIGHT METHOD

 

1.  PRERECORDED INFORMATION

Kill-rate pressure at ____strokes per minute _____psi.

Time of shut-in __________________________am/pm

2.  RECORD AT TIME OF SHUT-IN

Circulating time, surface to bit ____ min ,____pump strokes.

Shut-in drill pipe pressure(SIDPP)__________ psi

Shut-in casing pressure(SICP)______________ psi

Pit gain ________________________________bbl

3.  DETEMINE INITIAL CIRCULATING PRESSURE

Kill-rate pressure + SIDPP _________________spi

4.  CALCULATING MUD WEIGHT INCREASE

MWI  =  SIDPP  ÷TVD ÷0.052__________ ppg

Original mud weight _____________________ ppg

5.  NEW MUD WEIGHT REQUIRED_________ ppg

6.  DETERMINE FINAL CIRCULATING PRESSURE

Kill-rate pressure×new mud weight ÷old mud weight

______________psi

           

                 

GRAPHICAL ANALYSIS

 

1.  Plot initial circulating pressure at left edge of graph.

2.  Plot final  circulating pressure at right edge of graph

3.  connect the points with a straight line.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  ICP

  SBS

SBT

 

 

 

 

 

 

 

 

 

 

 

 

WELL-KILL WORKSHEET

CONCURRENT METHOD

 

7.  PRERECORDED INFORMATION

Kill-rate pressure at ____strokes per minute _____psi.

Time of shut-in __________________________am/pm

8.  RECORD AT TIME OF SHUT-IN

Circulating time, surface to bit ____ min ,____pump strokes.

Shut-in drill pipe pressure(SIDPP)__________ psi

Shut-in casing pressure(SICP)______________ psi

9.  DETEMINE INITIAL CIRCULATING PRESSURE

Kill-rate pressure + SIDPP _________________spi

10.    CALCULATING MUD WEIGHT INCREASE

MWI  =  SIDPP  ÷TVD ÷0.052__________ ppg

Original mud weight _____________________ ppg

11.    NEW MUD WEIGHT REQUIRED_________ ppg

12.    DETERMINE FINAL CIRCULATING PRESSURE

Kill-rate pressure×new mud weight ÷old mud weight

______________psi

           

                  

GRAPHICAL ANALYSIS

 

4.  Plot initial circulating pressure at left edge of graph.

5.  Plot final  circulating pressure at right edge of graph

6.  connect the points with a straight line.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 MUD WEIGHT

 ICP

 SBS

SBT

 

 

Procedure For The Concurrent Method

 

1.   After the well is closed in and the information recorded, calculate ICP,FCP, and the mud-weight increase fill in kill sheet, using increments of mud weight across the bottom of the graph. Also calculate surface-to-bit strokes and time and the drill pipe pressure decrease with each of the mud weights.

2.   Start the pump and bring it up to kill-rate speed while holding casing pressure constant. When the pump is up to kill rate, adjust drill pipe pressure to the calculated value. Circulation can be started as soon as ICP has been determined. 

3.   When circulating, have mud pit personnel  call up the mud weight each time mud weight in the pits is increased. Each time that the mud weight increases to one of the values at the bottom of the chart, have the choke operator adjust circulating pressure to the drill pipe pressure show on the graph.

4.   Continue circulating until mud of the required kill weight comes back to surface and the well is dead.

 

 

 

 

 

 

 

 

 

Well data (bar/litre)

 

Hole size:   8-1/2 inch

Hole depth:  4270m   TVD,  4510MD

Casing:   9-5/8 inch, casing set at 3048

                 TVD/MD

Drill pipe:   4-1/2 inch, capacity=7.4l/m,4205m long

 

 

气体侵入井内的方式:

1.      岩屑气侵

2.      重力置换气侵

3.      扩散气侵

4.      气体溢流

节流阀的作用:给井底施加一回压。

钻速突快: 当机械钻速突然增加5------6倍时的机械钻速叫钻速突快。

 

 

LOW CHOKE –PRESSURE METHOD

 

Definition:  Any procedure to kill a kick in which the choke is adjusted so that SIDPP falls below the value required to maintain bottomhole pressure at or above formation pressure is a low choke-pressure method.

Application situation:  Formation must be tight­­­­---of low permeability.

When SICP begins to rise while circulating a kick out and while holding bottomhole pressure constant, inexperienced personnel sometimes believe that allowing SICP to decrease is safer. Unfortunately, opening the choke to reduce SICP also reduced bottomhole pressure and allows formation fluids to flow once again into the well. In some cases, however, deliberately opening the choke to reduce back-pressure on the well can be used successfully to control the flow of fluids from well. In effect, the choke is opened, casing pressure is lowered, and additional formation fluids continue to enter the well as long as choke pressure is maintain at a low value.

Low choke-pressure method are sometimes employed in areas where it is possible to drill underbalanced. usually drilling underbalanced is applied in tight, low-permeability formations with which the operator is very familiar. By maintaining low-choke pressure, the crew can continue to drill underbalanced and keep the drilling rate high. Low choke-pressure methods have also been used to avoid damaging tight but fractured formations. For the method to be successful, the kicking formation must be tight­­­­---of low permeability. So that influxes are of relatively low volume---and the operator must have drilled a sufficient number of wells in the area to know the characteristics of the kicking formation.

In cases where the hole has penetrated a high-permeability formation or when formation

                     Permeability is not know, attempting to kill a kick with low choke-pressure method is uncertain.

 

天然气溢流的特点

 

一.天然气的特点

5.  可压缩

6.  密度小,扩散性大

7.  有剧毒(H2S,  CO2

二.天然气侵入井内的方式:

1.岩屑气侵

2.重力置换气侵

3.扩散气侵

8.  气体溢流

十一.          气体定律

                  P1V1=P2V2

 

 

十二.          气体侵入井内对井内液柱压力的影响

1. 气体在井内的存在形式:气泡  气柱

2. 天然气对钻井液密度的影响

 


 钻井液密度随井深自下而上减小

 

 

 

 

 

 

3.  气侵钻井液密度的计算

   

-----井深H处气侵钻井液密度

------地面气侵钻井业与其侵前钻井液密度之比

--------未气侵钻井液密度

------地面压力

4.  注意问题:

密度计算

对井内压力的影响

首要措施:地面除气

十三.          开井状态下气柱对井内压力的影响

气柱膨胀上升,井底压力逐渐减小

 

 

 

 

 

 

 

 


十四.           关井状态下气柱对井内压力的影响

           气柱不膨胀上升,井底及井口压力逐渐增大

 

 


                                                 L2

                          

 


                                                 L1 

                                   P

 

Pa = P -   0.00981 L2

Pb= P +   0.00981 L1

十五.          结论:

1.  关井是井口要承受很高的压力,要求井口防喷器要有足够高得逞压能力。

2.  发生气体溢流不应长时间关井,避免超过最大关井套压。

3.  气体滑脱上升引起井口压力不断升高,不能认为地层压力很高,不能录取这时的井口压力。

十六.          关井后天然气上升的处理

1.  立关压力法:

  原理:通过节流阀间断放出一定数量的钻井液,让天然气膨胀,气体压力降低,通过立管压力控制天然气的膨胀和井底压力,使井底压力略大于地层压力,既防止天然气再进入井内,又不压漏地层。

操作方法

①.先确定一个比初始关井立管压力高的允许立管压力Pd1 和放压过程中立管压力的变化值△P

②.当关井立管压力由Pd 增加到

Pd1+Pd )时,通过节流阀放钻井液,立管压力下降到Pd1时,关井

③.关井后,天然气继续上升,立管压力再次升高到Pd1+Pd ),在按上述方法放压,重复进行,可使天然气上升到井口。

放压过程中,环空放出钻井液,环空静液压力减小,因此套压增加一个值。套压增加等于环空静液压力的减小值。

 

不适应立管压力法的情况:

8.  钻头水眼堵死

9.  钻头位置在气体之上

10.      钻具刺坏等

 

五.体积法操作步骤:

8.  记录关井套压

9.  把节流管线放泥浆出口引到泥浆收集灌中,泥浆收集灌必须有刻度以便能准确计量放出的泥浆量。

10.             计算每次的放浆量,其对井底形成的静液压力值一般0.7Mpa(=100psi) (IADC推荐数值)左右。我们可设为0.5Mpa1Mpa

11.             监测关井套压,允许其升高一固定的数值(例如:0.5Mpa),

12.             当关井套压升高0.5Mpa时,注意新的关井套压值。调节节流阀(最好用手动的)保持此新的套压值不变,放出所要求的少量泥浆,测量所放出的泥浆量,当其体积等于步骤3中计算的体积时,关井。

13.             重复步骤4和步骤5直到气体到达井口。

14.    用顶部压井法置换井内的气体。

..\KickMonitor\AVI\volumekill.avi

 

顶部压井阀操作步骤:

7.  通过反循环管线注入一定量的钻井液,允

套压上升某一值,以最大允许值为准。

8.  当钻井液在重力作用下沉落后,通过节流阀慢慢释放气体,套压降到某一值后,关节流阀,套压降低值应等于注入钻井液的静液压力值。

9.  重复上述操作,指导井内充满钻井液为止。

 

 

 

 

 

 

版权所有:2005-2011 成都中油勘探监理有限公司 版权所有 蜀ICP备11005951号-1川公网安备 51010802000066号 技术支持:方法数码  
在线客服
在线客服系统