Chapter 1 The Frequently Used-vocabulary In Well
Control
井控常用词汇
1. abnormal pressure异常压力(normal
pressure,
正常压力 higher-than-expected/normal pressure,
lower-than-normal
pressure
abnormally
high pressure
abnormally
low pressure
2. accumulator储能器
3. accumulator
bottle储能器瓶
4. acid fracture酸裂
5. adjustable choke可调节流阀
6. annular blowout preventer (BOP) 环型防喷器(ram BOP) bag BOP
7. annular pressure/casing
pressure环空压力(套压)(drillpipe pressure立压) pit gain
8. annular space环空(annulus)
9. annular velocity环空上返速度
10. anticline 背斜
11. atmospheric pressure 大气压(0.1Mpa)(1at)
12. background gas
背景气
13. back off 倒扣/卸扣 make up
14. back-pressure 回压 check/单向阀
non-return valve回压凡尔
15. barite BaSO4 重晶石
16. barium sulfate BaSO4
17. barrel (bbl) gallon/加仑
18. bell nipple 钟型导向短节,(喇叭口)
19. BHP (bottom hole pressure)
20. bleed 放喷
21. bleed line放喷管线
22. blind ram 全封闸板
pipe
ram 半封闸板
shear
ram 剪切闸板
23. blind ram preventer全封闸板防喷器
24. blowout 井喷
(kick井涌)
25. blowout preventer control panel防喷器控制面板 console
26. blowout preventer control unit防喷器控制系统
27. blowout sticking 井喷 卡钻
28. BOP stack防喷器组
29. bottom hole pressure
test井底压力测试/DST----drill stem test中途测试
30. bottoms up 上返行程/lag time
31. bottoms-up time
上返时间
lag
time 迟到时间
32. Boyle’s law 波依耳定律
33. bridging
materials
桥堵材料
34. bullheading 压回地层压井法
35. cased hole 下入套管的 井眼
open
hole section裸眼段
36. casing套管 collar 钻铤
37. casing burst pressure
套管破裂压力
38. casing point 套管下深
39. casing pressure套压
40. casing seat 套管座
41. casing string 套管柱
42. cement n.水泥
43. cement plug水泥塞
44. change ram 更换闸板
45. charles’s law 查尔斯定律(V1/T1=V2/T2)
46. check valve 单向阀
47. choke 节流阀
48. choke line节流管线
49. choke manifold节流管汇/kill manifold
50. circulate-and-weight method 循环加重法
51. concurrent method /同步法
52. circulating components
循环系统
53. circulating density循环 密度 ECD
54. circulating fluid=drilling fluid=mud/slurry
55. circulating head 循环 头
56. circulating pressure循环压力
57. circulation循环
lost
circulation 井漏
58. clay hydration 粘土水化
59. closed-in pressure
shut-in
pressure 关井压力
60. concurrent method同步法
61. condition v. 处理,改善, 调整
62. connate water 原生水
63. connection gas 接单根气
64. constant choke-pressure method 恒节流压力法
65. constant pit-level method 恒泥浆池液面法
pit
gain 泥浆池增量
66. crystallization 结晶地层
67. degasser 除气器
68. diverter 分流器
69. diverter line分流器管线
70. drag 旋转阻力
71. driller’s BOP control panel 司钻控制台
72. driller’s method 司钻法
wait-and-weight method 等待加重法/工程师法
73. drilling break 钻速突快/放空
74. drilling fluid=drilling mud 钻井液
75. drilling rate 机械钻速
ROP—rate of penetration
m/h drilling time—钻时 min/m
76. drilling under pressure/under balance pressure
drilling UBD
欠平衡钻井
drilling over pressure /过平衡
near-balance pressure drilling/近平衡
77. drill pipe float 钻杆浮阀
78. drill pipe pressure 立压
79. drill pipe pressure
gauge立压表
80. drill pipe safety valve
钻杆安全阀
Kelly cock
81. drill stem 钻柱 drill
string
82. DST---drilling stem test /中途测试/unintentional
kick/intentional kick
83. drill under pressure v.
84. ECD---equivalent circulating density 等效/当量循环密度
85. entrained gas 气侵气
gas-cut
mud/气侵泥浆
86. explosive fracture 爆破压裂
87. fault 断层
88. fill line 灌浆管线 fill-up line
89. fill the hole v. 灌浆
90. fill-up rate灌浆速度
91. filter cake 滤饼
92. filter loss 滤失量
93. filter press 失水仪
94. final circulating pressure /FCP终了循环压力/ICP---initial circulating
pressure
95. flow check 溢流检测
96. formation breakdown pressure 地层破裂压力/leak-off test
97. formation competency test 地层承压能力测试
98. formation fluid地层流体
99. formation fracture gradient地层破裂压力梯度
100. formation
pressure地层压力
101. formation
strength地层强度
102. fracture 裂缝
103. fracture pressure破裂压力
104. friction loss压耗
105. gas气体
106. gas
buster=mud-gas separator泥浆-气 体分离器 Poor boy
107. gas-cut mud气侵泥浆
108. gas cutting气侵
109. gas detection
analyzer气体检测仪
110. geopressured
shales地压页岩
111. geostatic
pressure地静压力
112. geothermal
gradient地温梯度
113. guide shoe引鞋
114. gunk plug油泥塞
115. hang off
116. hard shut-in硬关井
117. soft shut-in软关井
118. head 静压头
119. hole
geometry/hole size井眼尺寸
120. hydraulic control
pod液控箱
121. hydril海德尔/
122. hydrogen
sulfide H2S
123. hydrostatic
pressure静液压力
124. IADC
International Association of
Drilling Contractors IWCF--forum
125. ICP 初始循环压力
initial
circulating pressure
FCP终了循环压力
final
circulating pressure
123. inside
blowout preventer钻具内防喷器
inside BOP
internal BOP
126. interstitial
water 原生水=connate
water
127. invert-emulsion
mud
逆乳化泥浆oil-base mud
128. Kelly cock 旋塞
upper
kelly cock上旋塞
lower
kelly cock下旋塞
126. kick 井涌/overflow
127. kick fluids井涌流体
129. kick tolerance井涌允许量
130. kill v. 压井well-kill n.
131. killing fluid压井液 MWI----mud weight increase
= 102Pd/H
132. kill line 压井管线
133. kill rate 压井泵速
134. kill-rate
pressure压井泵压
135. kill sheet压井施工单
fill
in 填写
133. kill string 压井管柱
leak-off test 漏失测试
136. log 测井
137. log a well v. 测井
138. logging device测井仪
139. loss of
circulation 井 漏
140. lost circulation井 漏
141. lost
circulation additives堵漏剂
140 lost circulation materials
LCM堵漏材料
141.lost circulation plug堵漏塞
142.lost returns 井漏
143.lubricate 润滑v.
144. macaroni string
145. matrix acidizing基岩酸化
146.maximum allowable surface pressure MASP/MAASP=Pf- Pm
最大允许关井套压 MACP
147.measured depth MD
测深层
TVD
=true vertical depth垂深
I.D 内径
O.D外径
148.Minerals Management Service
149. mud
additive泥浆添加剂
150.mud analysis logging
泥浆录井
151. mud column泥浆柱
152. mud conditioning处理泥浆
153. mud density recorder泥浆密度记录仪
154. mud-flow indicator泥浆流速指示器
mud-flow sensor
155. mud-gas separator泥浆气体分离器
156. mud gradient 泥浆压力梯度
Gm=0.00981ρm
157. mud-level recorder泥浆液面记录仪
158. mud log 泥浆日志
159. mud logger 泥浆测量员
160. mud pit 泥浆池
161. mud program 泥浆配方
162. mud pump 泥浆泵
163. mud return line /ditch泥浆槽
164. mud system 泥浆体系
165. mud tank 泥浆罐
166. mud weight 泥浆比重
167. nipple up 安装防喷器nipple down拆防喷器
168. normal circulation 正常循环
169. normal formation pressure正常地层压力
0.00981----- 0.010496 Mpa/m
170. OCS --- Outer Continental Shelf 外大陆架
171. OCS orders外大陆架法规
172. oil-base mud 油基泥浆
173. oil- emulsion mud油基乳化泥浆
174. open裸眼井,空井 open hole
175. overburden pressure上覆岩层压力
176. permeability 渗透性 impermeability
177. pipe ram preventer半封闸板防喷器
178. pit gain 泥浆池增量
179.pit-level indicator/recorder泥浆液面指示器
180. pit-volume recorder 泥浆体积记录仪
181.Pit Volume
Totalizer(PVT)泥浆体积累计器
182. plug 塞子
183. plug back 回填v.
184. plugging material 填井材料cement
185. positive choke节流
negative differential pressure负压差
186. pounds per cubic foot
磅/英尺3
187. pounds per gallon(ppg)
磅/加仑
fresh water /brine
188. pounds per square inch gauge(psig) 磅/英寸2
压力表
189. pounds per square inch per foot psi/ft
磅/英寸2/英尺-----压力梯度单位
190. pressure drop 压力降
191. pressure gauge 压力表
192. pressure gradient 压力梯度
193. pressure-integrity test 压力完整性测试
194. pressure loss压力损失
195. preventer packer防喷器胶芯
196. rate of penetration (ROP)机械钻速 m/hr
197. reduced circulating pressure(RCP)降低的循环压力 SCR—slow
circulating rate
198. remote BOP control panel =drill’s BOP control
panel
防喷器遥控面板
199. remote choke panel
节流阀遥控面板
200. returns 返出物
201. reverse circulation 反循环
202. reverse drilling break 钻速突慢
203.rotating blowout preventer 旋转防喷器
204.rotating head 旋转头
205.safety valve 安全阀
206.saturation point 饱和点
207.set point =casing depth 套管下深
208.setting depth 套管固深
209.shale 页岩/泥页sand
210.shallow gas 浅气层
211.shear ram 剪切闸板
212.shut in v. 关井
213.shut-in n. 关井
214. shut-in bottomhole pressure(SIBHP)
215. shut-in casing pressure(SICP)关井套压
SIDPP
216. shut-in drill pipe pressure(SIDPP) 关井立压 occur a kick 发生井涌 a kick has occurred
217. snub 不压井起下钻
218. snubber不压井起下钻装置
219. snubbing line不压井起下钻管线
220. snubbing unit = snubber
221. stack 防喷器组
222. strip a well
v. 强行起下钻
223. stripper head 封井头
224. stripper rubber 橡胶刮泥器
225. stripping强行起下钻作业
226. stripping in 强行下钻pull out of the hole
227. stripping out 强行起钻
228. strip pipe强行起钻
229. stump pressure test 抗冲击压力测试
230. subsea BOP 海底防喷器
231. subsea choke-line valve 海底节流管线阀
232. surface stack 地面防喷器组
233. surging 激动压力
234. swab
v. 抽汲 swabbing
波动压力---- swab-surge
235. swabbed show抽汲显示
236. swabbing 抽汲效应
237. swabbing effect 抽汲效应
238. temperature gradient 温度梯度
239. total depth (TD)总深 MD =
measured depth
240. transition zone 过渡带
241. trip gas 起下钻气
242. trip margin 起钻安全余量
243. trip tank 灌浆罐
244. true vertical pressure (TVD)垂深
245. tubingless completion 无油管完井workover/修井 service rig
246. underground blowout 地下井喷
247. upper kelly cock 上旋塞
248. wait-and-weight method 等待加重法(工程师法)
249. water-base mud 水基泥浆
250. water hammer 水击
251. wellbore =well=hole 井眼
252. wellbore pressure 井眼压力
253. well control 井控
254. well kick 井涌
255. wetability 润湿性
256. wild well 失控井/自喷井
257. out of control well失控井
Chapter 2 The Basic Concepts of Well Control
井控的基本概念
blowout
1. 井喷的危害/The harms of
1.1 井喷失控的危害性/ The harms of out of control for blowout
Think of danger in time of peace
居安思危
1.2 国内几起典型的井喷事故/The typical blow out incident in our country
2. 井喷失控的原因/The causes of
out of control for blowout
3. 对井控工作的正确认识/The correct view
to well control
4. 做好井控工作的对策/The policy to
implement well control operation
5. 井控及其相关的概念/well control and
relevant concepts
5.1 井控/well control /kick
control/pressure control-----井控是对油气井压力控制的简称/well control is control abbreviation to oil/gas
well pressure.
控制地层压力→实现近平衡压力钻井→保护油气层→提高采收率→延长油井使用寿命。
5.2 井控的三个阶段/The three stage of well control
5.2.1 一级井控/primary well control
一级井控是指利用合理的钻井液密度,正确的技术 及操作措施,满足近平衡压力钻井的要求,防止溢流发生,实现安全生产的井控工艺。
5.2.2 二级井控/secondary well control
二级井控是指及早发现溢流, 迅速实 现对井口的控制, 用压井工艺重建井内压力平衡的井控工艺。(重点)
5.2.3 三级井控/tertiary well control
三级井控是指井喷失控后,重新恢复对井的控制。
5.3 井侵/influx
当地层压力大于井底压力时, 地层孔隙中的流体(油气水)将侵入井内, 通常称为井侵。(地面除气设备处理)
5.4 溢流/overflow
地层压力大于井底压力时,地层流体在压力差的作用下向井内流动,这种流动成为溢流。
5.5 井涌/well kick
溢流进一步发展,钻井液涌出井口的现象称为井涌。
5.6 井喷/well blowout: wide-open flow畅喷
ground blowout
/ underground blowout
地层流体(油气水)无控制的涌入井筒,喷出地面的现象称为井喷。井喷流体自地层经井筒喷出地面叫地上井喷,从井喷地层流入其他低压地层的现象叫地下井喷。
5.7 井喷失控/out of control
for blowout
井喷发生后, 无法用常规方法控制井口而出现畅喷的现象称为井喷失控。这是钻井过程中最恶性的钻井事故。
Chapter 3 The Various Pressure Concept In Bore
Hole井下各种压力的概念
压力是井控的最主要的基本概念之一,了解压力的概念及各种压力之间的关系对于掌握井控技术和防止井喷是十分常重要的。/pressure is one of the most important
basic concepts. We should know the pressure concepts and the relation between various
pressure. This is very important for us to master well control technology and
prevent from blowout.
1.压力概念/pressure concepts
1.1 定义/Definition
所谓压力是指物体单位面积上所受的垂直力。
/pressure is the vertical force per unit area exerted by object.
1.2 公式/Formula
P----pressure压力
1Pa=1N/ m2
F----force 力 N
A----area 面积 m2
1.3 单位/unit
1 Pa=1N/m2
1 Pa是
1 N是指质量为
1MPa=103kPa=106 Pa=10bar 巴
=10.194at(kgf/cm2)≈10.2at
1at=1 kgf/cm2=98066.5 Pa
=98.0665 kPa=0.0980665 Mpa
粗略计算时,可认为:
1MPa=10kgf/cm2=10at (误差为2%)
1at=100 kPa=0.1 Mpa
psi----pounds/inch2(pounds
per square inch)
磅/英寸2
1psi=6.895
kPa≈7
kPa=0.007 Mpa
1000psi≈7 Mpa
5000
psi=35 Mpa
井控中很多压力是由液体和气体产生的,但压力的概念是一样的,所不同的是液体和气体在某点的压力在各个方向都相等。
2.静液压力/Hydrostatic
Pressure
2.1 定义/Definition
静液压力由静止液体重力产生的压力。
Hydrostatic Pressure is the force exerted by the weight of static fluid.
“hydro”------water
or liquid
“static”-------at
rest
2.2 公式 /Formula
Ph= gρH= 0.00981ρH Mpa
Ph= gρH= 0. 0981ρH bar
2.3 钻井液的静液压力/ Hydrostatic
Pressure of Drilling Fluid
在钻井作业中, 钻井液的静液压力是由井中钻井液重力产生的。
Pm= 0.00981ρm H Mpa 兆帕
Where:
ρm----钻井液的密度density of
drilling fluid. g/cm3(kg/l)
H------TVD垂深 m
For
example:举例
ρm =1.2 g/cm3 , H=2000m, kg/l
计算Calculate: Pm
答案Answer: Pm=0.00981ρm H
=0.00981*1.2*2000
=23.544(Mpa)
In
drilling, hydrostatic pressure is the force exerted by drilling fluid in the
wellbore. When formation pressure is greater than hydrostatic pressure,
formation fluid may enter the wellbore. If formation fluid enter the well bore
because formation pressure is higher than hydrostatic pressure, a kick has
occurred. If prompt action is not taken to control the kick, or kill the well,
a blowout may occur. To control a well, a proper balance between pressure in
the formation and pressure in wellbore must be maintained; Hydrostatic pressure
must be equal to or slightly higher than formation pressure.
3. 压力梯度/pressure
gradient
3.1 定义/Definition
单位垂直深度压力的变化值。
Pressure gradient is the amount pressure changes
with per unit true vertical depth.
TVD&MD: TD
TVD and MD is
differ, especially in directionally
drilled holes.
TVD is the length of a straight vertical line from
the surface to the bottom of the hole. MD or total depth is the length of the
well as measured along the actual course of the hole.
3.2 公式/formula
where:
G-----压力梯度gradient, Mpa/m
P-----压力pressure, Mpa
H----垂深TVD, m
钻井液的压力梯度:
Gm= Pm/H=0.00981ρm (Mpa/m)
例如For example:
ρm =
1.24g/cm3, H = 3353m.
计算calculate: Gm and Pm
答案answer: Gm= 0.00981ρm
=0.00981*1.24=0.0122(Mpa/m)
Pm = Gm H=0.0122*3353=40.8(Mpa)
3.3 英制表示法/Expression
Method of British System
g=
Pm = 0.052ρm H
Where:
Pm ------静液柱压力hydrostatic
pressure, psi---pounds per square inch.
ρm -------密度density, ppg----pounds per gallon.磅/加仑
H---------TVD, ft—foot.
换算关系/conversion
relation:
压力梯度公式Gradient formula:
G = 0.052 ρ (psi/ft)
例如For example: ρ水=8.33ppg
G 水= 0.052*8.33=0.433 (psi/ft)
磅/英寸2/英尺
4. 地层压力/formation pressure
4.1定义/definition
作用于地层孔隙流体上的压力叫地层压力。
Formation
pressure is the force exerted by fluids in a formation. It is measured at the
depth of the formation with the well shut in. It is also called reservoir
pressure or, since it is usually measured at the bottom of the hole with the
well shut in, shut-in bottom hole pressure.
Pp = Pd + Pm SIDPP SICP
4.2 地层压力的分类/ Pp
The
type of formation pressure
正常地层压力等于从地表到地下该地层处的静液压力。Normal formation pressure equal to the hydrostatic
pressure from surface to the formation.
Pp=Ph=0.00981ρ水H
Gp=Gh=0.00981ρ水
ρ水=1.0----1.07g/cm3
Gp=0.00981-----0.010496Mpa/m
Gp=0.0098-----0.010486Mpa/m (国内)
4.2.2 异常高压/abnormally high
pressure/
higher-than normal pressure
凡压力梯度高于淡水或盐水柱压力梯度的地层压力称为异常高压。
The formation pressure gradient which is higher than
that of fresh water or brine column is called abnormally high pressure.
有时,地层流体与地层的连同通通道常常被封闭或隔层隔段,此时,隔层下部的流体必须支撑上部岩层,岩石重于地层水,所以,地层压力可能超过静液压力,形成异常高压。Trap 欠压实的页岩层
4.2.3 异常低压/abnormally low pressure
lower-than normal pressure
凡压力梯度低于淡水或盐水柱压力梯度的地层压力称为异常低压。
The
formation pressure gradient which is lower than that of fresh water or brine
column is called abnormally low pressure.
异常低压常常发生于衰竭产层和大空隙的老地层。(露头outcrop/降低)
钻井实践表明:这三种类型的地层都可能钻遇到,其中异常高压地层更为多见,它与钻井工程及施工关系也最大。
压力,Mpa
o
![]() |
低压 正常 高压
井
深
m
4.3 地层压力的表示方法/
The expression method of formation pressure
在对比不同深度地层中的压力时, 可消除深度的影响。
平衡地层压力所需要的钻井液密.
Equivalent density is the drilling fluid that can balance the formation
pressure.
某点压力等于具有相当密度的流体在该点所形成的液柱压力。
计算公式:
ρp = 102Pp/H
= Pp/0.00981H
ρp ---- 当量密度equivalent
density, g/cm3
Pp ----地层压力formation pressure, MPa
H ----垂直深度TVD, m
non-dimension---无因次/无量纲
压力系数是指某点压力与该深度处淡水柱的静液压力之比。
与等效密度的关系:数值上相等
Pressure coefficient is a ratio that the pressure at
a given depth is divided by the hydrostatic
pressure of fresh water column at this depth.
Pp/0.00981*1*H = Pp/0.00981H
= 102Pp/H
在数值上等于当量密度。
例如:已知某井:H = 1000m,
Pp = 11.76Mpa,
求:该深度处的地层压力系数。
解: 压力系数 = 11.76/(0.00981*1*1000)
=1.2
例如:已知某井:H = 2000m,地层压力系数为1.3, 求:该深度处的地层压力。
解:Pp = 0.00981*1.3*2000=25.48(Mpa)
5. 上覆岩层压力/overburden pressure
5.1 定义/definition
上覆岩层压力是指某深度以上的岩石和其中的流体对该深度所形成的压力。
Overburden pressure is the pressure
exerted at any given depth by the weight of the sediments, or rocks, and the
weight of the fluids that fill pore space in the rock. Overburden pressure can
vary in different areas because the amount of pore space and the density of
rocks vary from place to place. Overburden pressure is generally considered to
be 1 pound (lb) per square inch per foot (psi/ft)
5.2
公式/formula
P0-----overburden
pressure, 上覆盖岩层压力Mpa
φ-----porosity,
% 空隙度
ρr-----density
of rocks, 岩石密度g/cm3
ρ-------density of formation fluid, 地层水密度g/cm3
connate
water
5.4 P0与Pp 的关系/
The
relationship between P0 and Pp
P0 = M + Pp
G0 = GM + Gp
M----基岩重力matrix
gravity, Mpa
G0 =0.022625Mpa/m=1psi/ft
压力, Mpa
0
井 Pp M P0
深
6. 破裂压力/fracture pressure----Pf
6.1定义/definition
破裂压力指地层抵抗水力压破的能力.
Formation fracture pressure is the amount of
pressure that causes a formation to break down or fracture.
6.2 表示方法
压力
压力梯度 Gf
等效密度
6.3与深度的关系
7. 破裂压力试验Fracture
primary well control
secondary well control
tertiary well control
think of danger in
time of peace
居安思危
=10Bar(巴)
7Mpa=1000psi
hydrostatic pressure
1foot=12inch
1foot =
equivalent
地层压力:
正常地层力:0.0098--0.010496Mpa/m
异常高压
异常低压
overburden pressure
fracture pressure Pf
swabbing
surging
differential pressure
pressure loss
laminar flow 层流
turbulent flow紊流
pump pressure
hydraulic pressure
地层破裂压力
一.定义 指地层抵抗水力压破的能力 leak-off
test
二.实验目的
1.确定最大允许钻井液密度ρmmax
2.确定最大允许关井套压(MAASP)Pamax
三、实验方法及步骤
(1) 井眼准备------当钻开套管鞋以下第一个砂岩层后,循环调整钻井液的性能,使其密度均匀稳定。一般钻3-----5米新井眼,最多不超过10 米。
(2) 上提钻具,关封井器。space out
(3) 用小排量,高压泵以0.8-----4升/秒的排量缓慢向井内注入钻井液(最好用水泥车)。
(4) 准确记录不同时间的注入量及井口压力。(若排量不变,可记录注入时间及井口压力)
(5) 一直注到井口压力不再升高,并略有下降时,停泵,记录数据后,从节流阀卸压。(若地层的承压能力很高,不一定非要压漏地层,满足钻井要求即可)
..\KickMonitor\CAI\AVI\压裂试验.avi
(6) 在直角坐标系内作出以井口压力与泵入量(泵入时间)为坐标的实验曲线。
(7) 从图中确定以下各点:
PL-------漏失压力。既开始偏离直线点的压力值。
PR--------破裂压力。最高点的压力值。
(8) 计算有关的数据:
地层的破裂压力:
Pf = PL+
0.00981ρm Hf
Hf----套鞋的垂直深度
破裂压力梯度:
Gf=
Pf/ Hf
破裂压力等效(当量)钻井液密度:
ρf =102 Pf/ Hf =ρm+102 PL/ Hf=102 Gf
(9) 确定最大允许钻井液密度ρmmax
表层套鞋以下: 1.221=1.23
ρmmax=ρf - 0.06 g/cm3
技术套鞋以下:
ρmmax=ρf - 0.12 g/cm3
(10) 确定最大允许关井套压Pamax
Pamax= Pf – Pm= Pf –0.00981ρm Hf
Pamax----------最大允许关井套压
Pf--------------- 地层的破裂压力
ρm----------
Pm-------------钻井液的静液压力
Hf--------- 套鞋的垂直深度
6. 58=6.59=6.5
1.2301=1.24
最大允许关井套压
MAASP------maximum allowable
annular surface pressure
8. 井底压力/BHP bottom
hole pressure
7.1 定义BHA bottom hole
assembly
井底压力是指地面及井内各种压力作用于井底的总压力.
BHP is the force exerted by surface pressure and various pressure in the hole.
7.1不同钻井作业中的井底压力
2.1.1. 钻井液静止时:
Pb=Pm
Pb-----井底压力
Pm-----钻井液静液柱压力
Pb=Pm – Psb - Pdp
Psb-----抽汲压力
Pdp------未灌液时静液压力的减小值
Pb=Pm + Psw
Psw------ 激动压力
Pb=Pm+ Pbp+
Pmr
Pm-----钻井液静液柱压力
Pbp----- 环空流动阻力
Pmr------岩屑引起的静液压力增值
7.1.5 划眼时ream
Pb=Pm+ Pbp+
Psw
8. 井底压差 /differential
pressure
8.1 定义 positive/negative
井底压力与地层压力的差值.
△P = Pb - Pp
8.2 井底压差与机械钻速的关系ROP
![]() |
|
|||
△P
8.3 △P影响Vm原因
(1). △P对井底岩屑产生压持效应.
(2).压差使井底岩石强度增加
9.1 压力损失/pressure loss
环空流动阻力
影响因素:
钻井液的上返速度
环空间隙
井深
钻井液的性能
10. 波动压力 swab-surge
抽汲压力----起钻时,钻柱向上运动, 相当于钻井液向下流动, 产生向上的摩擦阻力,使井底压力减小,由此而减小的压力叫抽汲压力。
激动压力-----下钻时,钻柱向下运动, 相当于钻井液向上流动, 产生向下的摩擦阻力,使井底压力增加,由此而增加的压力叫激动压力。
影响因素:
减小波动压力的措施:
1. 控制起下钻速度
2. 防止猛提猛刹
3. 调整好钻井液性能
4. 保持井眼畅通
11. 泵压和液压
12. 钻井液密度的确定:
1. 钻井液密度的确定1.3402=1.35
附加当量法:trip margin
ρm =ρp+ρe = 102Pp/H +ρe
油水层:ρe=
0.05----0.10 g/cm3
Pe = 1.5-----3.5Mpa
气层: ρe= 0.07----0.15 g/cm3
Pe = 3.0-----5.0Mpa
13. 溢流发生的原因
根本原因: 井底压力(Pb)小于地层压力(Pp)
1. 对地层压力掌握不准确, 使设计的钻井液密度偏低.
2. 井内钻井液柱高度下降.
(1)井漏 (2)没灌满井眼
3. 钻井液密度下降.
(1)气侵 (2)卡钻时混油
4. 起钻抽汲
5. 环空流动阻力消失.
二级井控
一. 溢流预兆overflow sign
1. 钻进过程
(1) 泥浆池液面升高
(2) 出口钻井液流速增加
(3) 停泵钻井液外溢
(4) 钻速突快或放空
(5) 循环泵压下降, 泵速增加
(6) 钻具悬重发生变化
(7) 钻井液性能发生变化
(8)岩屑的大小和形状发生变化
当机械钻速突然增加5---6倍时的钻速,米/小时,叫钻速突快.快钻时:钻时突然减小5---6倍时的钻时,叫快钻时。分钟/ 米
2. 起下钻时预兆
起钻时: 灌浆量 小于 起出钻具排替量
起出3柱钻杆或1柱钻铤displacement
下钻时: 返液量 大于 下入钻具排替量
3. 起完钻时预兆: trip tank
井口是否有外溢
二. 节流压井管汇
1. 节流压井管汇流程(如图所示)
2. 节流阀作用: 给井底施加回压
2. 节流阀特点: 只能节流, 不能断流
..\KickMonitor\avi\ChokeOpen.avi
4. 注意两点 : 防沙,防冻
5. 节流压井管汇的正确操作:
⑴关井操作: (软关井)
迅速打开液动/手动4#平板阀 HCR/ → 关封井器 → 关节流阀,试关井(Pa<Pamax=→关节流阀上游的平板阀。
⑵ 关井状态转变为压井状态:
缓慢开泵,同时迅速打开节流阀及节流阀上游的平板阀,调节 节流阀,保持关井套压不变,一直到 泵的排量达到压井排量/泵速 。
三. 为什么要迅速关井?
1. 可迅速控制住井口,使井控工作处于主动,有利于实现安全压井.
2. 可制止地层流体继续进入井内.
3. 减小关井套压(Pa)和关井立压(Pd)
4. 可准确计算地层压力(Pp)及压井泥浆密度。(ρm1)压降漏斗
Pp = Pd + Pm
四 . 关井方法:
1. 软关井: 先打开4液动/手动平板阀HCR, 再关封井器的关井方法.
soft shut-in
特点: 关井慢, 但减小了水击效应, 有利于安全生产.
2 钻井过程中为了进行硬关井节流管汇的设置:
1)防喷器一侧的液压阀关HCR
2)节流管线 开至遥控节流阀
3)遥控节流阀关
2. 硬关井: 直接关封井器的关井方法.
特点: 关井快, 但水击效应大, 不利于安全生产. hard
shut-in
五. 关井程序( shut-in
procedure)
1. 钻进过程(软关井)
(1) 发信号 (一长, 两短,三短)
(2) 停转盘,停泵
(3) 上提钻具
(4) 开液动/手动平板阀HCR
(5) 关封井器(BOP)---先关环形,再关半封
(6) 关节流阀,试关井,再关节流 上游的平板阀。 (打开环形)
(7) 录取关井立压Pd和关井套压Pa,泥浆池增量ΔV。
2. 起下钻过程 trip
(1) 发信号
(2) 停止作业,抢装回压凡尔
non-return valve
back pressure valve
(3) 开4液动/手动平板阀HCR—hydraulic control remote
(4) 关封井器(BOP)---先关环形,再关半封
(5) 关节流阀,试关井,再关节流上游的平板阀。(开 环形)
(6) 接方钻杆/或强行下钻
(7) 录取关井立压Pd和关井套压Pa,泥浆池增量ΔV。
3. 起下钻铤 strip
(1) 发信号
(2) 停止作业,抢装带回压凡尔的钻杆
(3) 开4液动/或手动平板阀
(4) 关防喷器BOP
(5) 关节流阀,试关井,再关关节流上游的平板阀(开 环形)
(6) 接方钻杆/或强行下钻
(7) 录取关井立压Pd和关井套压Pa,泥浆池增量ΔV。
4. 空井过程
喷势强烈:
(1) 发信号
(2) 开液动/或手动平板阀
(3) 关全封闸板.
(4) 关节流阀,试关井
(5) 关节流上游的平板阀。
(6) 录取关井套压和泥浆池增量
supervisor
六.关井时注意问题
1. 井内有钻具,不能关全封
2. 合理控制井口压力
3. 关井后,可正确活动钻具,可上下活动,严禁转动。
4. 关封井器要果断,一次使BOP实现关闭。
5. 严禁用封井器卸压 。
6. 长期关井一定要手动锁紧。
7. 完成关井程序后,迅速准备压井,密切关注套压的变化。
七. 关井立管压力的确定:
关井立管压力是计算Pp 和ρm1的重要依据, 因次准确录取Pd是十分常重要的。
1.关井状态下的压力平衡
钻柱内: Pp=Pd+ 0.00981ρmH
环空内 : Pp=Pa+ 0.00981ρm(H-hw)
+
0.00981ρw hw
hw -----溢流高度 m
ρw -----溢流密度, g/cm3
hw =ΔV/Va
ρw =ρm –102(Pa - Pd)/ hw
当ρw = 1.07----1.20 g/cm3 盐水溢流brine influ
ρw =
0.12----0.36 g/cm3 气体溢流
gas
influx
ρw =
0.36---1.07 g/cm3 油或混合溢流
oil
influx or mixing influx
3. 影响准确录取Pd的因素
⑴ 关井后井内压力达到平衡需要一定的时间 ---压降漏斗消失
permeability
⑵ 圈闭压力/trap pressure
① 定义: 指从立压表及套压表上记录到的超过平衡地层压力的关井压力值。 10 8 3
② 产生原因:
a. 关井先于 停泵, 圈闭着一部分泵的能量。
b. 气体在关井状态下滑脱上升(主要原因)
③ 检查方法 :
从节流阀放出40---80升钻井液,若立压和套压均有下降, 有圈闭压力。直到立压不再下降时记录到的立压才是真实的立压。若立压没有变化,套压有所增加,没有圈闭压力。
5. 钻柱中装有回压凡尔时,求 Pd
⑴ 不循环法
不知道压井泵速及该泵速下的循环压力Pci。
a. 缓慢启动泵,并向钻具内注入少量钻井液,观察立压和套压的变化。
b. 当套压超过关井套压 0.5或1Mpa时,停泵,说明钻杆回压阀被顶开,记录此时的立压Pd1和套压Pa1, 则
ΔPa = Pa1 - Pa
P d = Pd1 - ΔPa
⑵ 循环法
知道压井泵速及该泵速下的循环压力(Pci)。SCR
a. 缓慢开泵,同时迅速打开节流阀及节流阀上 游的平板阀,调节 节流阀,使套压等于关井套压
b. 当排量达到选定的压井排量时,保持不变,调节 节流阀,使套压恰好等于关井套压,记录此时的循环立管压力PT,停泵,关节流阀及上游的平板阀。
c. 计算: 关井立压Pd
Pd = PT - Pci
Pci = PT - Pd
八. 压井工艺/
BHP
constant method 井底常压法
1. 压井原理:以“U”型管原理为依据,以不变的压井排量向井内打入重浆,始终保持井底压力BHP大于或等于地层压力,当重泥浆返出井口时,若压井成功,则
Pa=Pd=0 0 0
2. 压井时应达到的要求:
(1) 始终保持井底压力BHP 大于或等于地层压力,并保持井底压力BHP不变。
(2) 严格按井控要求和措施(程序)施工。
(3) 保证不压漏地层。
(4) 保护油气层。
3. 压井排量/泵速的选择原则及原因
压井排量/泵速一般选正常钻进排量/泵速的1/2----1/3。原因:90
(1)正常循环压力加上关井立压有可能超过泵的额定工作压力。
(2)大排量高压泵所需要的功率有可能超过泵的输入功率.
(3). 大量流体流经节流阀有可能堵塞节流阀,从而压漏地层.
(4). 泥浆-气体分离器的处理泥浆的能力. Poor boy
mud-gas seperator
(5). 震动筛的处理能力.
井控技术中“三早”的内容:早发现,早关井,早处理。
4. 压井基本数据的计算
(1).判断溢流类型,选取安全附加值
溢流高度hw =ΔV /Va
ΔV----泥浆池增量pit gain m3
Va----溢流所在井段环空的每米容积. m3/ m
则:溢流的密度
ρw = ρm - 102(Pa-Pd)/ hw
当ρw = 1.07----1.20 g/cm3 盐水溢流brine influx
ρw =
0.12----0.36 g/cm3 气体溢流
gas
influx
ρw =
0.36---1.07 g/cm3 油或混合溢流
oil
influx or mixing influx
(2) 计算压井液密度ρm1
calculate killing fluid density
ρm1 = ρm+102Pd/ H +ρe
ρm1--------压井液密度 1.3502=1.36 范围 +0.07-----0.15
Pd------- 关井立压
H------垂深
ρe ------安全附加值
油水层:0.05----0.10 g/cm3
气层: 0.07----0.15 g/cm3
(3)计算井眼系容积及加重钻井液量
① 钻柱的内容积
V1 = ∏/4×(D
V1 = L1×Vp1+
L2×Vp2+…+ Ln×Vpn
Vp---钻具内容积系数
D-----钻具的内径 I.D---internal diameter /m
L-----钻具的长度 ,m
② 计算环空的容积.
( Dhn2 – Dpn2)
Ln]
V2 = L1×Vh1+
L2×Vh2+…+ Ln×Vhn
Vh-----环空的容积系数
Dh-----井眼直径或套管内径 m
Dp-----钻具的外径 m
O.D-----out diameter
③ 井眼系的总容积V
V总 = V1+V2 100----150/200
④ 加重钻井液量
V加 = 1.5----2.0 V总
(4). 计算注入加重液的时间
① 注满钻柱内容积所需要的时间t1
t1= 1000 V1/60Q min
Q-----压井排量 升/秒L/S 升/冲。冲/分
冲数=V1/Q
Q----- 泵排量 升/冲
t1=冲数/压井泵速 分钟
②注满环空容积所需要的时间t2
t2= 1000 V2/60Q min
(5).计算压井循环时的总压力
① 计算初始循环立管总压力ICP----动压力
PTi = Pd + Pci 原浆
initial
circulating pressure
T-----total
I------initial
active /current
PTi------初始循环立管总压力 Mpa
Pd ----- 关井立压 Mpa
Pci----- 压井排量/泵速下的循环压力 Mpa
②计算终了循环立管总压力FCP
Final circulating pressure
PTf = ρm1/ρm× Pci 14.31MPa=
14.4 经验公式
(6). 计算最大允许关井套压Pamax
Pamax= Pf – Pm = Pf – 0.00981ρm Hf
Pf = 0.00981ρm测试 Hf + PL
Pamax=(ρf -ρm)0.00981 Hf
Hf----套鞋深度 3.599 MPa =
3.5 MPa
Pamax-----最大允许关井套压
Pf------地层破裂压力
4. 司钻法压井/Driller’s Method两步循环
① 定义: 先用原浆循环排溢流, 再用重浆压井的压井工艺.
②压井步骤:
a. 计算压井基本数据
b. 填写压井施工单, 绘出立压控制进度表
c. 压井施工
第一步: 用原浆循环排溢流Cleaning well
a. 缓慢开泵, 同时迅速打开节流阀及节流阀上游的平板阀, 调节节流阀, 使套压保持关井套压不变, 直到排量达到压井排量.(5分钟之内完成) 时/后 0-----压井泵速
b. 保持压井排量不变, 调节节流阀, 使立压等于PTi, 直到溢流到井口.
c. 排完溢流, 停泵关井, 则Pa= Pd
a. 第二步: 用重泥浆压井 时 后
b. 缓慢开泵, 同时迅速打开节流阀及节流阀上游的平板阀, 调节节流阀, 使套压保持新的关井套压不变, 直到排量达到压井排量.(5分钟之内完成)
c. 保持压井排量不变, 调节节流阀, 使套压保持新的关井套压(已等于关井立压)不变, 直到重浆到达钻头. ----t1
c. 重泥浆返入环空, 调节节流阀, 使立压等于PTf, 直到重浆返出井口.-----t2
c. 停泵关井, 若压井成功, 则Pa=Pd=0.
d. 开井循环, 调整钻井液性能,恢复生产.
③司钻法压井中立压及套压的变化
P 第1循环周 第2循环周
PTi
PTf
Pd
T1
T2 T3 T4 T
司钻法压井中立压及套压的变化
立压变化
气体溢流套压变化
液体溢流套压变化
0 →T1: 溢流顶部到井口
T1→T2:排完溢流
T2→T3:重泥浆到钻头
T3→T4:重泥浆返出井口
..\kickmonitor\avi\ wellkilldriller.avi
7.工程师法压井wait-and-weight
method
定义:直接用重泥浆压井的井控工艺
施工步骤:driller
a. 缓慢开泵, 同时迅速打开节流阀及节流阀上游的平板阀, 调节节流阀, 使套压保持关井套压不变, 直到排量达到压井排量.(5分钟之内完成)
b. 保持压井排量不变, 调节节流阀, 按照立压控制进度表来调节立压,直到重泥浆到达钻头。------t1
c. 重泥浆返入环空, 调节节流阀, 使立压等于PTf, 直到重浆返出井口. --------t2
d. 停泵关井, 若压井成功, 则Pa=Pd=0.
e. 开井循环, 调整钻井液性能,恢复生产.
P
PTi
![]() |
PTf
Pa
0
T1 T2 T3 T4 T
工程师法压井中立压及套压的变化
立压变化
气体溢流套压变化
液体溢流套压变化
0 →T1:重泥浆到钻头
T1→T2:溢流顶部到井口
T2→T3:排完溢流
T3→T4:重泥浆返出井口
..\kickmonitor\avi\wellkillnew.avi
天然气溢流的特点
一.天然气的特点
1. 可压缩
2. 密度小,扩散性大
3. 易燃,易爆有毒(H2S, CO)
二.天然气的在不同类型钻井液中的溶解性:
天然气更易溶解于油基钻井液
二.天然气侵入井内的方式:
1.岩屑气侵
2.重力置换气侵
3.扩散气侵
4. 气体溢流
三. 气体定律
四. 气体侵入井内对井内液柱压力的影响
1. 气体在井内的存在形式:气泡 或 气柱
2. 运动方式:循环上升,滑脱上升。
3. 天然气对钻井液密度的影响:
![]() |
钻井液密度随井深自下而上减小
钻井液密度随井深自上而下增加
4. 气侵钻井液密度的计算
-----井深h处气侵钻井液密度
------地面气侵钻井液与气侵前钻井液密度之比
--------未气侵钻井液密度
------地面压力 0.1MPa
5. 注意问题:
①密度计算
②对井内压力的影响
③首要措施:地面除气 degasser
五. 开井状态下气柱对井内压力的影响
气柱膨胀上升,井底压力逐渐减小
![]() |
![]() |
![]() |
![]() |
六. 关井状态下气柱对井内压力的影响
气柱不膨胀上升,气柱压力不变,近似等于地层压力,井底及井口压力逐渐增大
![]() |
|||||||
![]() |
![]() |
![]() |
|||||
L2
![]() |
L1
P 气
压力反转 pressure
inversion
Pa = P气 -
L2
Pb=
P 气 + 0.00981 L1
七. 结论:
1. 关井时井口要承受很高的压力,要求井口防喷器要有足够高的承压能力。
2. 发生气体溢流不应长时间关井,避免超过最大关井套压。
3. 气体滑脱上升引起井口压力不断升高,不能认为地层压力很高,不能录取这时的井口压力。
八. 关井后天然气上升的处理(不循环处理)
1. 立管压力法:
原理:通过节流阀间断放出一定数量的钻井液,使天燃气膨胀,气体压力降低,通过立管压力控制天然气的膨胀和井底压力,使井底压力略大于地层压力,既防止天然气再进入井内,又不压漏地层。
操作方法:
①.先确定一个比初始关井立管压力高的允许立管压力Pd1 和放压过程中立管压力的变化值△Pd 。 5—6 ---7
②.当关井立管压力由Pd 增加到
(Pd1+△Pd )时,通过节流阀放钻井液,立管压力下降到Pd1时,关井
③.关井后,天然气继续上升,立管压力再次升高到(Pd1+△Pd ),再按上述方法放压,重复进行,可使天然气上升到井口。
注意:放压过程中,环空放出钻井液,环空静液压力减小,因此套压增加一个值。套压增加等于环空静液压力的减小值。
不适应立管压力法的情况:top
kill
1. 钻头水眼堵死
2. 钻头位置在气体之上
3. 钻具刺坏等
4. 空井 volumetric method
2. 体积法:BHP constant
原理:通过节流阀间断放出一定数量的钻井液,使天燃气膨胀,气体压力降低,通过套管压力控制天然气的膨胀和井底压力,使井底压力略大于地层压力,既防止天然气再进入井内,又不压漏地层。
九.体积法操作步骤:
1. 记录关井套压
2. 把节流管线放泥浆出口引到泥浆收集灌中,泥浆收集灌必须有刻度以便能准确计量放出的泥浆量。
3. 计算每次的放浆量,其对井底形成的静液压力值一般0.7Mpa(=100psi) (IADC推荐数值)左右。我们可设为0.5Mpa或1Mpa。
1=0.00981*ρm*△v/va
100=0.052*ρm*△v/va
4. 测关井套压,允许其升高一固定的数值OK—
over kill (例如:过平衡量为1Mpa),5---6---7.0—8—9---10---11
5. 当关井套压升高1Mpa,注意新的关井套压值。调节节流阀(最好用手动的)保持此新的套压值不变,放出所要求的少量泥浆,测量所放出的泥浆量,当其体积等于步骤3中计算的体积时,关井。
6. 重复步骤4和步骤5直到气体到达井口。
7. 用顶部压井法置换井内的气体。Top
kill method
..\KickMonitor\AVI\v olumekill.avi
top kill顶部压井阀操作步骤:top
kill method
1. 通过反循环管线注入一定量的钻井液,允
套压上升某一值,以最大允许值为准。
2. 当钻井液在重力作用下沉落后,通过节流阀慢慢释放气体,套压降到某一值后,关节流阀。
3. 重复上述操作,直到井内充满钻井液为止。
九. 天然气在泥浆中的溶解性:
1. 水基泥浆 小
2. 油基泥浆 大
防止地层水化的添加剂: 醇类
![]() |
4. 隔水导管钻井液安全增量(Riser Margin)
在考虑压井钻井液时,对于使用海底防喷器的井,可能遇到与地面不同的问题。隔水导管的损坏会使得在导管里的钻井液静液压力被海水的静液压力所替换。隔水导管钻井液安全增量是隔水导管损坏时维持一级井控所需要的钻井液密度增量,通常的计算程序如下:
Rotary
Kelly bushing
RKB
sea level ha Air gap
Sea bed |
H
△P = 0.00981(ha + hw)ρm – 0.00981 hwρw
[(ha + hw)ρm– hwρw]
△ρm =102△P/H’=
H - ha - hw
所需最小钻井液密度
ρm min = ===
Hρm
- hwρw
H - ha -
hw
H------井深 ,m
hw ----------海水深,m
ha ---------气隙,m
ρm---------原浆密度,kg/l
ρw--------海水密度,kg/l
已知水深152米,井深1829米,压井钻井 液密度为1.41kg/l,
隔水管破裂时,所需最小钻井液密度 及 隔水管安全余量。
五. 海底井控:
..\KickMonitor\CAI\TUPIAN\水下防喷器.bmp
关井程序:
1. 钻进过程:
(1). 停止转盘旋转钻,发出警报
(2) 上提方钻杆至预先计算好的高度
(3) 停泵
(4) 打开水下阻流阀和可调节流阀(失效保护阀)
(5) 关环形防喷器
(6) 关遥控可调节流阀
(7) 确认来自井内的所有流动都停止,
(8) 记录关井立压和关井套压及泥浆池增量
(9) 如需要开始悬挂程序:
hang off
A. 上提或下放钻具以确保闸板不要关在钻具接头上 space out
B. 关闭闸板
C. 慢慢下放钻柱直到钻具接头坐到闸板上,并观察指重表的减少值.
D. 如果闸板不带自动缩紧装置,启动锁紧装置.
(10) 通知监督
2. 起下钻过程
(1) 停止起下钻作业, 发出警报
(2) 接一完全打开的钻杆安全阀
(3) 关闭钻杆安全阀,打开水下阻流阀和可调节流阀(失效保护阀)
(4) 关环形防喷器
(5) 关遥控可调节流阀
(6) 确认来自井内的所有流动都停止,
(7) 记录关井立压和关井套压及泥浆池增量
(8) 通知监督
3 钻井过程中为了进行硬关井节流管汇的设置:
1)防喷器一侧的液压阀关
2)节流管线 开至遥控节流阀
3)遥控节流阀关
3,压井
井底常压法同样适用于水下压井, 所不同之处是:
由于压井时不通过隔水管, 节流管线的阻力大, 最大允许关井套压降低。压井之前须测出通过隔水管的低泵速泵压和通过的节流管线低泵速泵压。两者差值既为节流管线的阻力。压井结束后,还需放出关闭的防喷器下的圈闭的气体和替出隔水管内的轻钻井液。
下列那种方法可用于测量浮式钻机上的节流管线摩阻力?
(三个答案)
2032 节流管线摩阻力只有在关井时才能计算。
2031 在节流阀完全打开的情况下,低速从压井管线循环至节流管线。泵压是节流管线摩阻力的两倍。
2030 低速从压井管线循环至节流管线。泵压近似是节流管线摩阻力的一半。
2029 低速从节流管线循环至隔水管。泵压等于节流管线摩阻力。
2028 在节流阀完全打开的情况下,使钻井液通过隔水管循环上返,然后通过节流管线循环上返,则两次测得的压力之差就是节流管线摩阻力。
不适应立管压力法的情况:
5. 钻头水眼堵死
6. 钻头位置在气体之上
7. 钻具刺坏等 volumetric method
九.体积法操作步骤:
1. 记录关井套压
2. 把节流管线放泥浆出口引到泥浆收集灌中,泥浆收集灌必须有刻度以便能准确计量放出的泥浆量。
3. 计算每次的放浆量,其对井底形成的静液压力值一般0.7Mpa(=100psi)
(IADC推荐数值)左右。我们可设为0.5Mpa或1Mpa。
0.5=0.00981*ρm*△v/va
4. 测关井套压,允许其升高一固定的数值(例如:0.5Mpa),5---5.5---6.0—6.5—7.0---7.5---8.0
5. 当关井套压升高0.5Mpa,再升高0.5Mpa时,注意新的关井套压值。调节节流阀(最好用手动的)保持此新的套压值不变,放出所要求的少量泥浆,测量所放出的泥浆量,当其体积等于步骤3中计算的体积时,关井。
6. 重复步骤4和步骤5直到气体到达井口。
7. 用顶部压井法置换井内的气体。Top kill method
..\KickMonitor\AVI\volumekill.avi
顶部压井阀操作步骤:
4. 通过反循环管线注入一定量的钻井液,允
套压上升某一值,以最大允许值为准。
5. 当钻井液在重力作用下沉落后,通过节流阀慢慢释放气体,套压降到某一值后,关节流阀,套压降低值应等于注入钻井液的静液压力值。
6. 重复上述操作,直到井内充满钻井液为止。
十. 天然气在泥浆中的溶解性:
1. 水基泥浆 小
2. 油基泥浆 大
![]() |
WELL-KILLING WORK SHEET
DRILLER’S METHOD
1. Record information
a. Casing size_________Depth________ft
b. Rated casing burst_______________psi
Maximum allowable surface(MASP)
d. Pressure___g
pressure
(1)
____________psi
Rate________spm
(2) ____________psi Rate_________spm active /current
e. Normal
circulating pressure________psi
Pump rate ____________ stroke/min
Reduced circulatin e________spm
f. Time of
shut-in__________________am/pm
2. Stop pump and close well completely. Allow pressure to
stabilize
Do not
let casing pressure exceed MASP. If pressure builds to this value, circulate at
highest allowed casing pressure and use low-choke pressure method to kill the
well.
a. Shut-in drill pump pressure(SIDPP)_____psi
b. Shut-in
casing pressure(SICP)__________psi
c. Mud weight
_________________________ppg
d. True vertical
depth ____________________ft
e. Pit
gain______________________________bbl
f. Circulating time,
surface to bit_________min
L/stroke-----displacement
Stroke /min
4. Set
circulating rate and pressure to
clean the well
a. Start pump and open choke, as require. Pressure
on the choke initially should be the shut-in casing pressure, and this pressure
should be maintained while the pump speed comes up to the desired strokes per
minute.
b. Adjust choke to obtain SICP or to obtain SIDPP
plus reduced circulating rate psi.
c. Record circulating
SIDPP___________psi
Rate ____________________________spm
d. Maintain the pump
rate constant at the selected reduced speed and maintain constant circulating
SIDPP. If drill-pipe pressure increase, open choke; if it decrease, close the
choke slightly. When the choke is adjusted, observe change on casing gauge to
forecast magnitude of pressure on drill-pipe gauge.
e. When well is free
of gas, oil, or salt water, stop pump and close well. At this time, the annulus
and drill-pipe pressure should be the same as original SIDPP.
f. Record new
SICP__________________psi
4. Calculate mud
density to kill the well.
The
mud density increase needed is calculated from the information recorded in step
2.
MWI = SIDPP ÷TVD ÷0.052 ppg
5. Increase surface mud system to required
density.
If mud weighting can be done in separate
pit, it should be started at step 3.
6. Set circulating rate and pressures to kill
well
a. . Start pump and open choke as require. Pressure on
the choke initially should be the shut-in casing pressure 3f, and this pressure should be maintained while the
pump speed comes up to the desired strokes per minute.
b. Adjust choke to hold the new annulus pressure and
hold constant until the drill-pipe is full of the required density mud.
c. After drill pipe is full of the required density
mud, record drill-pipe pressure and hold pump rate and drill-pipe pressure
constant by varying choke size until the annulus is filled with new mud.
d. When required weight reaches surface, choke
pressure, if any, is bled off. Stop
circulating
and check for flow
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
ICP
FCP
SIDPP
SBS—number
of surface-to bit strokes
SBT---surface-to-bit
time, min
WELL-KILL WORKSHEET
WAIT-AND-WEIGHT METHOD
1. PRERECORDED
INFORMATION
Kill-rate pressure at ____strokes per minute
_____psi.
Time of shut-in __________________________am/pm
2. RECORD AT TIME OF
SHUT-IN
Circulating time, surface to bit ____ min ,____pump
strokes.
Shut-in drill pipe pressure(SIDPP)__________ psi
Shut-in casing pressure(SICP)______________ psi
Pit gain ________________________________bbl
3. DETEMINE INITIAL
CIRCULATING PRESSURE
Kill-rate pressure + SIDPP _________________spi
4. CALCULATING MUD
WEIGHT INCREASE
MWI = SIDPP ÷TVD ÷0.052__________ ppg
Original mud weight _____________________ ppg
5. NEW MUD WEIGHT
REQUIRED_________ ppg
6. DETERMINE FINAL
CIRCULATING PRESSURE
Kill-rate
pressure×new mud weight ÷old mud weight
______________psi
GRAPHICAL
ANALYSIS
1. Plot initial
circulating pressure at left edge of graph.
2. Plot final circulating pressure at right edge of graph
3. connect the
points with a straight line.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
ICP
SBS
SBT
WELL-KILL WORKSHEET
CONCURRENT METHOD
7. PRERECORDED
INFORMATION
Kill-rate pressure at ____strokes per minute
_____psi.
Time of shut-in __________________________am/pm
8. RECORD AT TIME OF
SHUT-IN
Circulating time, surface to bit ____ min ,____pump
strokes.
Shut-in drill pipe pressure(SIDPP)__________ psi
Shut-in casing pressure(SICP)______________ psi
9. DETEMINE INITIAL
CIRCULATING PRESSURE
Kill-rate pressure + SIDPP _________________spi
10. CALCULATING MUD
WEIGHT INCREASE
MWI = SIDPP ÷TVD ÷0.052__________ ppg
Original mud weight _____________________ ppg
11. NEW MUD WEIGHT
REQUIRED_________ ppg
12. DETERMINE FINAL
CIRCULATING PRESSURE
Kill-rate
pressure×new mud weight ÷old mud weight
______________psi
GRAPHICAL
ANALYSIS
4. Plot initial
circulating pressure at left edge of graph.
5. Plot final circulating pressure at right edge of graph
6. connect the
points with a straight line.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
MUD WEIGHT
ICP
SBS
SBT
Procedure For The Concurrent Method
1. After the well is
closed in and the information recorded, calculate ICP,FCP, and the mud-weight
increase fill in kill sheet, using increments of mud weight across the bottom
of the graph. Also calculate surface-to-bit strokes and time and the drill pipe
pressure decrease with each of the mud weights.
2. Start the pump
and bring it up to kill-rate speed while holding casing pressure constant. When
the pump is up to kill rate, adjust drill pipe pressure to the calculated
value. Circulation can be started as soon as ICP has been determined.
3. When circulating,
have mud pit personnel call up the mud
weight each time mud weight in the pits is increased. Each time that the mud
weight increases to one of the values at the bottom of the chart, have the
choke operator adjust circulating pressure to the drill pipe pressure show on
the graph.
4. Continue
circulating until mud of the required kill weight comes back to surface and the
well is dead.
Well data
(bar/litre)
Hole size: 8-1/2 inch
Hole depth: 4270m
TVD, 4510MD
Casing: 9-5/8 inch, casing set at 3048
TVD/MD
Drill pipe: 4-1/2 inch, capacity=7.4l/m,4205m long
气体侵入井内的方式:
1. 岩屑气侵
2. 重力置换气侵
3. 扩散气侵
4. 气体溢流
节流阀的作用:给井底施加一回压。
钻速突快: 当机械钻速突然增加5------6倍时的机械钻速叫钻速突快。
LOW CHOKE –PRESSURE METHOD
Definition: Any procedure to kill
a kick in which the choke is adjusted so that SIDPP falls below the value
required to maintain bottomhole pressure at or above formation pressure is a
low choke-pressure method.
Application
situation: Formation must be tight---of
low permeability.
When
SICP begins to rise while circulating a kick out and while holding bottomhole
pressure constant, inexperienced personnel sometimes believe that allowing SICP
to decrease is safer. Unfortunately, opening the choke to reduce SICP also
reduced bottomhole pressure and allows formation fluids to flow once again into
the well. In some cases, however, deliberately opening the choke to reduce
back-pressure on the well can be used successfully to control the flow of
fluids from well. In effect, the choke is opened, casing pressure is lowered,
and additional formation fluids continue to enter the well as long as choke
pressure is maintain at a low value.
Low
choke-pressure method are sometimes employed in areas where it is possible to
drill underbalanced. usually drilling underbalanced is applied in tight,
low-permeability formations with which the operator is very familiar. By
maintaining low-choke pressure, the crew can continue to drill underbalanced
and keep the drilling rate high. Low choke-pressure methods have also been used
to avoid damaging tight but fractured formations. For the method to be successful,
the kicking formation must be tight---of low permeability. So that influxes
are of relatively low volume---and the operator must have drilled a sufficient
number of wells in the area to know the characteristics of the kicking
formation.
In
cases where the hole has penetrated a high-permeability formation or when
formation
Permeability is not know,
attempting to kill a kick with low choke-pressure method is uncertain.
天然气溢流的特点
一.天然气的特点
5. 可压缩
6. 密度小,扩散性大
7. 有剧毒(H2S, CO2)
二.天然气侵入井内的方式:
1.岩屑气侵
2.重力置换气侵
3.扩散气侵
8. 气体溢流
十一. 气体定律
十二. 气体侵入井内对井内液柱压力的影响
1. 气体在井内的存在形式:气泡 或 气柱
2. 天然气对钻井液密度的影响:
![]() |
钻井液密度随井深自下而上减小
3. 气侵钻井液密度的计算
-----井深H处气侵钻井液密度
------地面气侵钻井业与其侵前钻井液密度之比
--------未气侵钻井液密度
------地面压力
4. 注意问题:
①密度计算
②对井内压力的影响
③首要措施:地面除气
十三. 开井状态下气柱对井内压力的影响
气柱膨胀上升,井底压力逐渐减小
![]() |
![]() |
![]() |
![]() |
十四. 关井状态下气柱对井内压力的影响
气柱不膨胀上升,井底及井口压力逐渐增大
![]() |
![]() |
![]() |
![]() |
L2
![]() |
L1
P 气
Pa = P 气 - 0.00981 L2
Pb=
P 气 + 0.00981 L1
十五. 结论:
1. 关井是井口要承受很高的压力,要求井口防喷器要有足够高得逞压能力。
2. 发生气体溢流不应长时间关井,避免超过最大关井套压。
3. 气体滑脱上升引起井口压力不断升高,不能认为地层压力很高,不能录取这时的井口压力。
十六. 关井后天然气上升的处理
1. 立关压力法:
原理:通过节流阀间断放出一定数量的钻井液,让天然气膨胀,气体压力降低,通过立管压力控制天然气的膨胀和井底压力,使井底压力略大于地层压力,既防止天然气再进入井内,又不压漏地层。
操作方法:
①.先确定一个比初始关井立管压力高的允许立管压力Pd1 和放压过程中立管压力的变化值△Pd 。
②.当关井立管压力由Pd 增加到
(Pd1+△Pd )时,通过节流阀放钻井液,立管压力下降到Pd1时,关井
③.关井后,天然气继续上升,立管压力再次升高到(Pd1+△Pd ),在按上述方法放压,重复进行,可使天然气上升到井口。
放压过程中,环空放出钻井液,环空静液压力减小,因此套压增加一个值。套压增加等于环空静液压力的减小值。
不适应立管压力法的情况:
8. 钻头水眼堵死
9. 钻头位置在气体之上
10. 钻具刺坏等
五.体积法操作步骤:
8. 记录关井套压
9. 把节流管线放泥浆出口引到泥浆收集灌中,泥浆收集灌必须有刻度以便能准确计量放出的泥浆量。
10. 计算每次的放浆量,其对井底形成的静液压力值一般0.7Mpa(=100psi) (IADC推荐数值)左右。我们可设为0.5Mpa或1Mpa。
11. 监测关井套压,允许其升高一固定的数值(例如:0.5Mpa),
12. 当关井套压升高0.5Mpa时,注意新的关井套压值。调节节流阀(最好用手动的)保持此新的套压值不变,放出所要求的少量泥浆,测量所放出的泥浆量,当其体积等于步骤3中计算的体积时,关井。
13. 重复步骤4和步骤5直到气体到达井口。
14. 用顶部压井法置换井内的气体。
..\KickMonitor\AVI\volumekill.avi
顶部压井阀操作步骤:
7. 通过反循环管线注入一定量的钻井液,允
套压上升某一值,以最大允许值为准。
8. 当钻井液在重力作用下沉落后,通过节流阀慢慢释放气体,套压降到某一值后,关节流阀,套压降低值应等于注入钻井液的静液压力值。
9. 重复上述操作,指导井内充满钻井液为止。
![]() |